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Abstract. We investigate the existence of ground state sign-changing
solutions for the following elliptic equation of Kirchhoff type:(

1 + b

∫
R3

g2(u)|∇u|2dx
) [−div(g2(u)∇u) + g(u)g′(u)|∇u|2]

+ V (x)u = K(x)f(u),

where x ∈ R
3, b > 0, g ∈ C1(R,R+), V (x), and K(x) are both positive

continuous functions. First, using some new analytical techniques and
non-Nehari manifold method, we obtain one ground state sign-changing
solution vb = G−1(ub). Moreover, we prove that the energy of vb =
G−1(ub) is strictly larger than twice that of the ground state solutions of
Nehari type. We also establish the convergence property of vb = G−1(ub)
as the parameter b ↘ 0. Our results improve and generalize some results
in Li et al. (J Math Anal Appl 443:11–38, 2016).
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1. Introduction

In this paper, we are concerned with a class of non-linear elliptic equations:(
1 + b

∫
R3

g2(u)|∇u|2dx

)[−div(g2(u)∇u) + g(u)g′(u)|∇u|2]
+V (x)u = K(x)f(u), (1.1)

where x ∈ R
3, b > 0, V (x), and K(x) are both positive functions; f is a

continuous function and g ∈ C1(R,R+).
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In recent years, there has been increasing attention to the following
generalized quasilinear Schrödinger equations:

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = h(x, u) x ∈ R
N , (1.2)

where N ≥ 3, see, such as [7,8,15–18,37–40] and the references therein.
Methematically, it is, indeed, a hot issue in non-linear analysis to study the
existence of solitary wave solutions for the following quasi-linear Schrödinger
equation:

i∂tz = −Δz + W (x)z − k(x, |z|) − Δl(|z|2)l′(|z|2)z, (1.3)

where z : R×R
N → C,W : RN → R is a given potential, and l : R → R and

k : RN ×R → R are suitable functions. For various types of l, the quasilinear
equation of the form (1.1) has been derived from models of several physical
phenomenon. In particular, when l(s) = s, Eq. (1.1) was used to derive
the superfluid film [20,22] equation in fluid mechanics by Kurihara [20]. For
more physical background, please refer to literatures [5,6,9,19,23,33,35,36].
In fact, (1.3) with l(t) = tα for some α ≥ 1, see [24–26,32] and the references
therein. However, in our mind, only in the recent papers [16,40], Eq. (1.3)
with a general l has been considered.

When b = 0, then (1.1) is reduced to the following equation:

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = K(x)f(u), x ∈ R
3. (1.4)

If g2(u) = 1 + 2u2 in (1.4), then (1.4) derives the following equation:

− Δu + V (x)u − Δ(u2)u = K(x)f(u), x ∈ R
3. (1.5)

Moreover, if we choose g(t) = 1 in (1.1), then (1.1) reduces to the following
equation:

−
(

1 + b

∫
R3

|∇u|2dx

)
Δu + V (x)u = f(x, u), x ∈ R

3. (1.6)

As far as we know, this problem is related to the stationary analog of the
evolution equation of Kirchhoff type:

utt −
(

1 + b

∫
R3

|∇u|2dx

)
�u + V (x)u = f(x, u), (1.7)

where ∇u denotes the spatial gradient of u, which was proposed by Kirch-
hoff [21] as an extension of the classical D’Alemberts wave equation for free
vibrations of elastic strings. Equation (1.6) appears in many fields, such as
physical, engineering and other sciences, and in those situations, model (1.6)
is considered to be a good approximation for describing non-linear vibrations
of beams or plates. There has been a great deal of attention devoted to the
existence and multiplicity of solutions for (1.6). For related work, we can refer
to [27,29,48–50] and so on.

Note that (1.2) is more general than (1.5). Therefore, it is more neces-
sary to study (1.2). For related work, we can refer to [14–18,30,37–40]. Based
on these work, in very recent years (1.2), derives two different kinds of equa-
tions. One is generalized quasilinear Schrödinger–Maxwell system, which has
been considered in [13,51]. The other is (1.1), which is considered to be a
generalization of (1.2). Therefore, it is very important for us to study (1.1).
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To the authors’ knowledge, there are few papers on the existence of the
ground state solution and sign-changing solution for (1.1) except for Li et al.
[28]. They called Eq. (1.1) as a Kirchhoff-type perturbation of the generalized
quasilinear Schrödinger equation (1.2) due to the appearance of the non-local
term

∫
R3 g2(u)|∇u|2dx. After the work of [28], there are no papers concerned

with the existence of the ground state sign-changing solutions with general
non-linearity. In this paper, we will deal with the existence of the ground
state solution sign-changing solution to Eq. (1.2) with general non-linearity.
What is more, we establish an interesting result that the same conclusion can
be also derived for Eq. (1.1), which adds a perturbation in (1.2).

To guarantee the compactness, as in [10,42], we assume that g, V (x)
and K(x) satisfy
(g) g ∈ C1(R,R+) is even with g′(t) ≥ 0 for all t ∈ R

+ and g(0) = 1.
(V ) V ∈ C(R3,R), V (x) > 0 for all x ∈ R

3 and H ⊂ H1(R3), such that, for
2 < q < 6, the embedding

H ↪→ Lq(R3)
is compact, where

H:=

{
H1

r (R
3) = {u ∈ H1(R3) : u(x) = u(|x|)} , if V (x) is a constant,{

u ∈ D1,2(R3) :
∫
R3(|∇u|2 + V (x)u2)dx < ∞}

, if V (x) is not a constant,

(1.8)

with the following norm:

‖u‖ =
(∫

R3
(|∇u|2 + V (x)u2)dx

) 1
2

.

Clearly,
H1(R3) =

{
u ∈ L2(R3) : ∇u ∈ L2(R3)

}
,

with the norm

‖u‖H1 =
(∫

R3
(|∇u|2 + u2)dx

) 1
2

.

(K) K ∈ C(R3,R) ∩ L∞(R3,R) and K(x) > 0 for all x ∈ R
3.

To establish the existence of ground state sign-changing solutions, we
need to make the following assumptions:

(f1) f ∈ C(R,R) and

lim
t→0

f(t)
g(t)G(t)

= 0,

where G(t) =
∫ t

0
g(s)ds for all t ∈ R.

(f2) f has a “quasicritical” growth, namely lim|t|→∞
f(t)

g(t)G(t)5 = 0.

(f3) lim|t|→∞
f(t)

g(t)G(t)3 = ∞.

In fact, by applying the constraint variational method and quantitative defor-
mation lemma, Li et al. [28] proved the existence of ground state solutions
and sign-changing solutions to (1.1) when f ∈ C1(R,R) satisfies (f1)–(f3)
and (f ′

4) f/(g|G3|) is increasing on (−∞, 0) and (0,∞), respectively, and
lim|t|→∞ F (t)/G4(t) = ∞, where F (t) =

∫ t

0
f(s)ds for all t ∈ R.
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In addition, they also assume that (V,K) ∈ K, that is, V and K satisfy:
(V ′) the potential function V is positive on R

3 and belongs to L∞(R3)∩
Cα(R3) for some α ∈ (0, 1);

(K ′) K ∈ L∞(R3) ∩ Cα(R3) is positive;
(K1) If {Sn} ⊂ R

3 is a sequence of Borel sets, such that |Sn| ≤ M , for
all n and some M > 0, then we have

lim
R→+∞

∫
Sn\BR

K(x)dx = 0, uniformly in n ∈ N,

where BR = {x ∈ R
3 : |x| < R};

(K2) For some p ∈ [2, 6) and Ap ∈ R
+, it holds that

lim sup
|x|→∞

K(x)
V (x)(6−p)/4

= [1 − sgn(p − 2)]Ap,

where sgn(p − 2) = 0 if p = 2 and sgn(p − 2) = 1 if p > 2.
With these hypotheses, the space E given by

E =
{

u ∈ D1,2(R3) :
∫
R3

V (x)u2dx < ∞
}

with the same norm as in H is compactly embedded into the weighted
Lebesgue space:

Lq
K(R3) =

{
u : u is measurable onR

3 and
∫
R3

K(x)|u|qdx < ∞
}

,

for some q ∈ (2, 6), see ( [1], Proposition 2.1).
Obviously, (V ′) implies that the potential V may vanish at infinity, and

then, Eq. (1.1) becomes a zero mass problem. Therefore, the main difficulty
lies in the lack of compactness. To overcome this difficulty, some scholars
suppose that (K ′), (K1), and (K2) hold, such as [1]. However, in this paper,
we can skillfully get a compact embedding via the conditions (V ) and (K).

Since the term
∫
R3 g2(u)|∇u|2dx is not well defined in H, it is necessary

to propose a variable substitution as follows, in detail. For any v ∈ H, as
[40], we make a change of variable as

u = G−1(v) and G(u) =
∫ u

0

g(t)dt,

then ∫
R3

g2(u)|∇u|2dx =
∫
R3

g2(G−1(v))|∇G−1(v)|2dx := |∇v|22 < ∞.

It is easy to see that a function u : R3 → R is called a weak solution of (1.1),
if v ∈ H and for all φ ∈ C∞

0 (R3), it holds

(1 + b|∇v|22)
∫
R3

∇v · ∇φdx +
∫
R3

V (x)
G−1(v)

g(G−1(v))
φdx

=
∫
R3

K(x)
f(G−1(v))
g(G−1(v))

φdx.
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Define energy functional as

Ib(v) :=
1
2

∫
R3

|∇v|2dx +
1
2

∫
R3

V (x)G−1(v)2dx

+
b

4

(∫
R3

|∇v|2dx

)2

−
∫
R3

K(x)F (G−1(v))dx, (1.9)

where v ∈ H and F (u) =
∫ u

0
f(s)ds. Hence, the critical point of I ′ is solutions

of (1.1). The functional Ib is well defined for every v ∈ H and Ib ∈ C1(H,R).
Moreover, if v is a critical point for I ′

b, then for all ψ ∈ C∞
0 (RN ), we have

〈I ′
b(v), ψ〉 = (1 + b|∇v|22)

∫
R3

∇v∇ψdx +
∫
R3

V (x)
G−1(v)

g(G−1(v))
ψ

−
∫
R3

K(x)
f(G−1(v))
g(G−1(v))

ψdx. (1.10)

Thus, to obtain the solutions of (1.1), it suffices to study the existence of
solutions of the following equation:

−
(

1 + b

∫
R3

|∇v|2dx

)
Δv + V (x)

G−1(v)
g(G−1(v))

= K(x)
f(G−1(v))
g(G−1(v))

, x ∈ R
3. (1.11)

For convenience, we rewrite Eq. (1.9) in the following form:

−
(

1 + b

∫
R3

|∇v|2dx

)
Δv + V (x)v = K(x)f̃(x, v), x ∈ R

3, (1.12)

and the corresponding energy functional is

Jb(v) =
1
2

∫
R3

(|∇v|2 + V (x)v2)dx +
b

4

(∫
R3

|∇v|2dx

)2

−
∫
R3

K(x)F̃ (x, v)dx,

where

f̃(x, v) =
f(G−1(v))
g(G−1(v))

+
V (x)
K(x)

v − V (x)
K(x)

G−1(v)
g(G−1(v))

and

F̃ (x, v) =
∫ v

0

f̃(x, s)ds = F (G−1(v)) +
1
2

V (x)
K(x)

v2 − V (x)
K(x)

|G−1(v)|2.

If b = 0, then (1.12) will reduce to the following equation:

− Δv + V (x)v = K(x)f̃(x, v), x ∈ R
3. (1.13)

Clearly, if v is a critical point of Jb(v), then u = G(v) is a weak solution
of (1.1). In addition, by the monotonicity of G in Lemma 2.1 below, if v is
a ground state sign-changing solution of (1.12), then u = G(v) is a ground
state sign-changing solution for (1.1). Thus, we just need to study Problem
(1.12).
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For the sake of achieving our results, we also need to make the following
assumption:

(f̃4) There exists a θ0 ∈ (0, 1), such that for any x ∈ R
3, t > 0 and τ �= 0

K(x)

[
f̃(x, τ)

τ3
− f̃(x, tτ)

(tτ)3

]
sgn(1 − t) + θ0V (x)

|1 − t2|
(tτ)2

≥ 0.

It is important to highlight that (f̃4) plays a key role in establishing the
existence of the ground state sign-changing solutions. What is more, (f̃4) is
much weaker than the following condition:

(f̃ ′
4)

f̃(x,t)
|t|3 is non-decreasing on R\{0}.

In fact, many functions can satisfy assumption (f̃4), but not (f̃ ′
4). Motivated

by [10], we give the following example to illustrate this point: let g(t) =
1, V ≡ 1, and 0 < K(x) ≤ M for all x ∈ R

3:

f(x, t) =

{
|t|3t, if |t| ≤ 	,

α|t|3t + 1
3M t, if |t| > 	,

α, 	 > 0, and 3(1−α)	3M = 1. Obviously, f̃ = f satisfies (f̃4) with θ0 = 1/2
but does not satisfy (f̃ ′

4).
Furthermore, if v ∈ H is a solution of (1.1) and v± �= 0, then v is a

sign-changing solution of (1.7), where

v+(x) := max{v(x), 0} and v−(x) := min{v(x), 0}.

As we all know, various ways have been adopted to prove the existence of
sign-changing solutions for elliptic equation, such as by constructing invariant
sets and descending flow in [2], via the Ekeland’s variational principle and the
implicit function theorem in [34], applying variational method together with
the Brouwer degree theory in [3], by Morse index theory in [11], and using
diagonal principle with non-Nehari manifold method in [3,10,13,14,43–46].

Next, we give an essential decomposition which is useful in these meth-
ods to seek sign-changing solutions for (1.1), for any v ∈ H:

J ′
0(v) = J ′

0(v+) + J ′
0(v−), (1.14)

〈J ′
0(v), v+〉 = 〈J ′

0(v+), v+〉, 〈J ′
0(v), v−〉 = 〈J ′

0(v−), v−〉, (1.15)

where J0 : H → R is the energy functional of (1.4) given by the following:

J0(v) =
1
2

∫
R3

(|∇v|2 + V (x)v2)dx −
∫
R3

K(x)F̃ (x, v)dx

and

〈J ′
0(v), ϕ〉 =

∫
R3

(∇v∇ϕ + V (x)vϕ)dx −
∫
R3

K(x)f̃(x, v)ϕdx.

For the functional Jb, we have

Jb(v) = Jb(v+) + Jb(v−) +
b

2
‖∇v+‖2

2‖∇v−‖2
2, (1.16)

〈J ′
b(v), v+〉 = 〈J ′

b(v+), v+〉 + b‖∇v+‖2
2‖∇v−‖2

2, (1.17)
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〈J ′
b(v), v−〉 = 〈J ′

b(v−), v−〉 + b‖∇v+‖2
2‖∇v−‖2

2. (1.18)

Motivated by the above-mentioned works, we will consider the following min-
imization problems:

mb := inf
v∈Mb

Jb(v) and m0 := inf
v∈M0

J0(v), (1.19)

where

Mb :=
{
v ∈ H : v± �= 0, 〈J ′

b(v), v+〉 = 〈J ′
b(v), v−〉 = 0

}
(1.20)

and

M0 :=
{
v ∈ H : v± �= 0, 〈J ′

0(v), v+〉 = 〈J ′
0(v), v−〉 = 0

}
, (1.21)

the minimizers correspond to the sign-changing solutions for Problems (1.1)
and (1.2), respectively.

In the present paper, we intend to prove that the energy of any sign-
changing solutions of (1.1) is larger than twice that of the ground state solu-
tions of (1.1), and establish the convergence property of a least energy sign-
changing solution for Problem (1.1) as b ↘ 0. Define the following Nehari
manifolds:

Nb := {v ∈ H : v �= 0, 〈J ′
b(v), v〉 = 0〉} (1.22)

and
N0 := {v ∈ H : v �= 0, 〈J ′

0(v), v〉 = 0〉} (1.23)
with

cb := inf
v∈Nb

Jb(v) and c0 := inf
v∈N0

J0(v), (1.24)

which play an active role to seek the ground state solutions of Nehari type
for (1.1) and (1.4).

Now, we state our main results by the following theorems.

Theorem 1.1. Suppose that (g), (V ), (K), (f1)–(f3), and (f̃4) are satisfied.
Then, problem (1.12) has a sign-changing solution vb ∈ Mb, such that
Jb(vb) = infMb

Jb > 0, which has precisely two nodal domains.

Theorem 1.2. Suppose that (g), (V ), (K), (f1)–(f3), and (f̃4) are satisfied.
Then, problem (1.12) has a solution v̄ ∈ Nb, such that Jb(v̄) = infNb

Jb,
moreover, mb > 2cb.

Theorem 1.3. Suppose that (g), (V ), (K), (f1)–(f3), and (f̃4) are satisfied.
Then, problem (1.13) has a sign-changing solution w0 ∈ M0, such that
J0(w0) = infM0 J0 > 0, which has precisely two nodal domains. Further-
more, for any sequence {bn} with bn ↘ 0 as n → ∞, there exists a sub-
sequence which we label in the same way, such that vbn → v0 in H, where
v0 ∈ M0 is a sign-changing solution of (1.13) with J0(v0) = infM0 J0 > 0.

Remark 1.4. (I) In this paper, the problem (1.1) possesses the non-local term
(
∫
R3 g2(u)|∇u|2dx)Δu, as we mentioned above, Jb no longer has the proper-

ties (1.14) and (1.15), and it is rather difficult to show that Mb �= ∅. To seek
sign-changing solutions, we introduce a condition (f̃4) much weaker than (f̃ ′

4).
With (f̃4), we use a new ideas, i.e., non-Nehari manifold method to prove the
existence of ground state sign-changing solutions for (1.1).
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(II) Note that f ∈ C1(R3) is a key point in seeking ground state energy
sign-changing solutions in [28]. However, in this paper, we only assume that
f ∈ C(R3).

The paper is organized as follows. In Sect. 2, some preliminary lemmas
are presented. In Sect. 3, we prove a solution of (1.1) with two nodal domains
using critical point obtained in Sect. 2 as a component. Sections 4 and 5 are
devoted to the proof of Theorems 1.2 and 1.3, respectively.

2. Some preliminary lemmas

In this section, we present some fundamental lemmas and corollaries. Now,
let us review the following lemma which has been proved in [30].

Lemma 2.1 [30]. For the functions g,G, and G−1, the following properties
hold:

1. the functions G(·) and G−1(·) are strictly increasing and odd.
2. G(s) ≤ g(s)s for all s ≥ 0; G(s) ≥ g(s)s for all s ≤ 0.
3. g(G−1(s)) ≥ g(0) = 1 for all s ∈ R.
4. G−1(s)

s is decreasing on (0,+∞) and increasing on (−∞, 0).
5. |G−1(s)| ≤ 1

g(0) |s| = |s| for all s ∈ R.

6. |G−1(s)|
g(G−1(s)) ≤ 1

g2(0) |s| = |s| for all s ∈ R.

7. G−1(s)s
g(G−1(s)) ≤ |G−1(s)|2 for all s ∈ R.

8. lim|s|→0
G−1(s)

s = 1
g(0) = 1 and

lim|s|→+∞
G−1(s)

s
=

{
1

g(∞) , if g is bounded,

0, if g is unbounded.

Lemma 2.2. Assume that (g) and (f1)–(f3) hold. Then, the function f̃(x, s)
has the following properties:

(f̃1) f̃ ∈ C(R3 × R,R) and lims→0
f̃(x,s)

s = 0;
(f̃2) f̃ has a “quasicritical” growth, that is,

lim
|s|→∞

f̃(x, s)
s5

= 0.

(f̃3) f̃ is superquadratic at infinity, that is,

lim
|s|→∞

f̃(x, s)
s3

= ∞.
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Proof. Using (8) in Lemma 2.1, one has

lim
s→0

f̃(x, s)
s

= lim
s→0

f(G−1(s))
sg(G−1(s))

+
V (x)
K(x)

1
2

lim
s→0

(
1 − G−1(s)

sg(G−1(s))

)

= 0 +
V (x)
K(x)

1
2

lim
s→0

(
1 − 1

g(0)

)

= 0.

Since f̃ ∈ C(R3 × R,R), then (f̃1) holds. Moreover, we have

lim
|s|→∞

f̃(x, s)
s5

= lim
|s|→∞

1
s5

f(G−1(s))
g(G−1(s))

+
V (x)
K(x)

1
2

lim
|s|→∞

(
1
s4

− 1
s5

G−1(s)
g(G−1(s))

)
.

Let t = G−1(s), then the above equality can deduce that

lim
|s|→∞

f̃(x, s)
s5

= lim
|t|→∞

f(t)
g(t)G(t)5

+
V (x)
K(x)

1
2

lim
|s|→∞

(
1
s4

− 1
s5

G−1(s)
g(G−1(s))

)

= 0 +
V (x)
K(x)

1
2

lim
|s|→∞

(
1
s4

− 1
s4

1G−1(s)
sg(G−1(s))

)
= 0,

then (f̃2) holds. Next, by (f3), we have

lim
|s|→∞

f̃(x, s)
s3

= lim
|t|→∞

f(t)
g(t)G3(t)

+
V (x)
K(x)

1
2

lim
|s|→∞

(
1
s2

− 1
s2

G−1(s)
sg(G−1(s))

)
=∞,

and thus, (f̃3) holds. �

Lemma 2.3. Suppose that (V ), (K), and (f̃1)–(f̃4) are satisfied. Then

Jb(v) ≥ Jb(sv+ + tv−) +
1 − s4

4
〈J ′

b(v), v+〉 +
1 − t4

4
〈J ′

b(v), v−〉

+
(1 − θ0)(1 − s2)2

4
‖v+‖2 +

(1 − θ0)(1 − t2)2

4
‖v−‖2

+
b(s2 − t2)2

4
‖∇v+‖2

2‖∇v−‖2
2, ∀ v = v+ + v− ∈ H, s, t ≥ 0.

(2.1)

Proof. With (f̃4), for any x ∈ R
3, t ≥ 0, τ ∈ R\{0}, we have

K(x)
[
1 − t4

4
τ f̃(x, τ) + F̃ (x, tτ) − F̃ (x, τ)

]
+

θ0V (x)
4

(1 − t2)2τ2

=
∫ 1

t

{
K(x)

[
f̃(x, τ)

τ3
− f̃(x, sτ)

(sτ)3

]
+ θ0V (x)

(1 − s2)
(sτ)2

}
s3τ4ds ≥ 0.

(2.2)
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Hence, combining (1.17) and (1.18), for any s, t ≥ 0, we imply that

Jb(v) − Jb(sv+ + tv−)

=
1
2
(‖v‖2 − ‖sv+ + tv−‖2) +

b

4
(‖∇v‖4

2 − ‖s∇v+ + t∇v−‖4
2

)

+
∫
R3

K(x)
[
F̃ (x, sv+ + tv−) − F̃ (x, v)

]
dx

=
1 − s4

4
(‖v+‖2 + b‖∇v+‖4

2

)
+

1 − t4

4
(‖v−‖2 + b‖∇v−‖4

2

)

+
(1 − s2)2

4
‖v+‖2 +

(1 − t2)2

4
‖v−‖2 +

b(1 − s2t2)
2

‖∇v+‖2
2‖∇v−‖2

2

+
∫
R3

K(x)
[
F̃ (x, sv+) + F̃ (x, tv−) − F̃ (x, v+) − F̃ (x, v−)

]
dx

=
1 − s4

4
〈J ′

b(v), v+〉 +
1 − t4

4
〈J ′

b(v), v−〉 +
(1 − s2)2

4
‖v+‖2

+
(1 − t2)2

4
‖v−‖2 +

b(s2 − t2)2

2
‖∇v+‖2

2‖∇v−‖2
2

+
∫
R3

K(x)
[
1 − s4

4
f̃(x, v+)v+ + F̃ (x, sv+) − F̃ (x, v+)

]
dx

+
∫
R3

K(x)
[
1 − t4

4
f̃(x, v−)v− + F̃ (x, tv−) − F̃ (x, v−)

]
dx.

By (2.2) and the above inequality, we get

Jb(v) − Jb(sv+ + tv−)

≥ 1 − s4

4
〈J ′

b(v), v+〉 +
1 − t4

4
〈J ′

b(v), v−〉 +
(1 − θ0)(1 − s2)2

4
‖v+‖2

+
(1 − θ0)(1 − t2)2

4
‖v−‖2 +

b(s2 − t2)2

2
‖∇v+‖2

2‖∇v−‖2
2

+
∫
R3

{
K(x)

[
1 − s4

4
f̃(x, v+)v+ + F̃ (x, sv+) − F̃ (x, v+)

]

+
θ0V (x)

4
(1 − s2)2|v+|2

}
dx

+
∫
R3

{
K(x)

[
1 − t4

4
f̃(x, v−)v− + F̃ (x, tv−) − F̃ (x, v−)

]

+
θ0V (x)

4
(1 − t2)2|v−|2

}
dx

≥ 1 − s4

4
〈J ′

b(v), v+〉 +
1 − t4

4
〈J ′

b(v), v−〉 +
(1 − θ0)(1 − s2)2

4
‖v+‖2

+
(1 − θ0)(1 − t2)2

4
‖v−‖2 +

b(s2 − t2)2

2
‖∇v+‖2

2‖∇v−‖2
2,

which implies that (2.1) holds. �
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Corollary 2.4. Suppose that (V ), (K), and (f̃1)–(f̃4) are satisfied. If v = v++
v− ∈ Mb, then

Jb(v) ≥ Jb(sv+ + tv−) +
(1 − θ0)(1 − s2)2

4
‖v+‖2 +

(1 − θ0)(1 − t2)2

4
‖v−‖2

+
b(s2 − t2)2

4
‖∇v+‖2

2‖∇v−‖2
2, ∀ s, t ≥ 0. (2.3)

Corollary 2.5. Suppose that (V ), (K), and (f̃1)–(f̃4) are satisfied. If v = v++
v− ∈ Mb, then

Jb(v+ + v−) = max
s,t≥0

Jb(sv+ + tv−). (2.4)

Lemma 2.6. Suppose that (V ), (K), and (f̃1)–(f̃4) are satisfied. If v ∈ H
with v± �= 0, then there exists a unique pair (sv, tv) of positive numbers, such
that svv

+ + tvv
− ∈ Mb.

Proof. We will first prove the existence of (sv, tv). Set

g1(s, t) = s2‖v+‖2 + bs4‖∇v+‖4
2 + bs2t2‖∇v+‖2

2‖∇v−‖2
2

−
∫
R3

K(x)f̃(x, sv+)sv+dx (2.5)

and

g2(s, t) = t2‖v−‖2 + bt4‖∇v−‖4
2 + bs2t2‖∇v+‖2

2‖∇v−‖2
2

−
∫
R3

K(x)f̃(x, tv−)tv−dx. (2.6)

For any fixed t ≥ 0, it follows from (f̃1) and (f̃3) that g1(s, s) > 0, g1(s, s) > 0
for s > 0 small enough and g1(t, t) < 0 and g2(t, t) < 0 for t large. Thus,
there exist 0 < a1 < a2, such that

g1(a1, a1) > 0, g2(a1, a1) > 0, g1(a2, a2) < 0, g2(a2, a2) < 0. (2.7)

From (2.5)–(2.7), we have

g1(a1, t) > 0, g1(a2, t) < 0 ∀ t ∈ [a1, a2] (2.8)

and
g2(s, a1) > 0, g2(s, a2) < 0 ∀ s ∈ [a1, a2]. (2.9)

By Miranda’s Theorem [31], there exists a pair (su, tu) with a1 < sv, tv < a2,
such that g1(sv, tv) = g2(sv, tv) = 0. Hence, svv+ + tvv− ∈ Mb.

Next, we prove the uniqueness. Let (s1, t1) and (s2, t2) be such that
siv

+ + tiv
− ∈ Mb, where i = 1, 2. Taking the advantage of Corollary 2.4, we

have

Jb(s1v
+ + t1v

−) ≥ Jb(s2v
+ + t2v

−) +
(1 − θ0)(s2

1 − s2
2)

2

4s2
1

‖v+‖2

+
(1 − θ0)(t21 − t22)

2

4t21
‖v−‖2
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and

Jb(s2v
+ + t2v

−) ≥ Jb(s1v
+ + t1v

−) +
(1 − θ0)(s2

1 − s2
2)

2

4s2
2

‖v+‖2

+
(1 − θ0)(t21 − t22)

2

4t22
‖v−‖2,

which implies that (s1, t1) = (s2, t2). �

Lemma 2.7. Suppose that (V ), (K) and (f̃1)–(f̃4) are satisfied. Then

inf
v∈Mb

Jb(v) = mb = inf
v∈H,v± �=0

max
s,t≥0

Jb(sv+ + tv−).

Proof. By Corollary 2.5, we obtain

inf
u∈H,v± �=0

max
s,t≥0

Jb(sv+ + tv−) ≤ inf
v∈Mb

max
s,t≥0

Jb(sv+ + tv−)

= inf
v∈Mb

Jb(v) = mb (2.10)

Moreover, for any v ∈ H with v± �= 0, it follows from Lemma 2.6 that:

max
s,t≥0

Jb(sv+ + tv−) ≥ Jb(sv+ + tv−) ≥ inf
v∈Mb

Jb(v) = mb,

which implies

inf
v∈H,v± �=0

max
s,t≥0

Jb(sv+ + tv−) ≥ inf
v∈Mb

Jb(v) = mb. (2.11)

Hence, combining (2.10) and (2.11), we have that the conclusion holds. �

Lemma 2.8. Suppose that (f̃4) is satisfied. Then, for any τ ∈ R,

K(x)
[
1
4
τ f̃(x, τ) − F̃ (x, τ)

]
+

θ0V (x)
4

τ2 ≥ 0. (2.12)

Proof. Taking t = 0 in (2.2), we can easily get the conclusion. �

Lemma 2.9. Suppose that (V ), (K), and (f̃1)–(f̃4) are satisfied. Then, mb > 0
can be achieved.

Proof. Let {vn} ⊂ Mb be such that Jb(vn) → mb. According to (1.17), (1.18)
and (2.12), for large n ∈ N, one has

1 + mb

≥ Jb(vn) − 1
4
〈J ′

b(vn), vn〉

≥ 1 − θ0

4
‖vn‖2+

∫
R3

{
K(x)

[
1
4
f̃(x, vn)vn − F̃ (x, vn)

]
+

θ0V (x)
4

|vn|2
}

dx

≥ 1 − θ0

4
‖vn‖2. (2.13)

It shows that {vn} is bounded in H due to 0 < θ0 < 1, and then, there exists
a vb ∈ H, such that v±

n ⇀ v±
b in H. Since 〈J ′

b(v), v〉 = 0,∀ v ∈ Mb, then by
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(f̃1)–(f̃3) and Sobolev embedding theorem, for any ε > 0, we have

‖v‖2 ≤
∫
R3

(|∇v|2 + V (x)v2)dx + b

(∫
R3

|∇v|2dx

)2

=
∫
R3

K(x)f(x, v)vdx

≤ ε

∫
R3

K(x)|v|2dx + Cε

∫
R3

K(x)|v|6dx

≤ εC1‖v‖2 + C2‖v‖6,

where C1 and C2 are positive constants. We can choose ε = 1
2C1

, so there
exists a constant α > 0, such that ‖v‖2 ≥ α. Moreover, by (V ), (K), (f̃1)–(f̃3),
(1.18), and ( [47], A.1), one can conclude that

0 < α ≤ lim inf
n→∞

(‖v±
n ‖2 + b

∫
R3 |∇vn|2dx

∫
R3 |∇v±

n |2dx
)

= lim inf
n→∞

∫
R3 K(x)f̃(x, v±

n )v±
n dx

=
∫
R3 K(x)f̃(x, v±

b )v±
b dx + o(1), (2.14)

which yields that v±
b �= 0. In fact, if v±

b = 0, then we have 0 < α ≤ 0, which is
contradiction. Furthermore, by (2.14), the weak semicontinuity of norm and
Fatou’s Lemma, we get

‖v±
b ‖2 + b

∫
R3

|∇vb|2dx

∫
R3

|∇v±
b |2dx

≤ lim inf
n→∞

[
‖v±

n ‖2 + b

∫
R3

|∇vn|2dx

∫
R3

|∇v±
n |2dx

]

=
∫
R3

K(x)f̃(x, v±
b )v±

b dx. (2.15)

This shows that
〈J ′

b(vb), v±
b 〉 ≤ 0. (2.16)

Thus, by (1.17), (1.18), (2.1), (2.12), and (2.16), the weak semicontinuity of
norm, Fatou’s Lemma, and Lemma 2.5, we obtain

mb = lim
n→∞

[
Jb(vn) − 1

4
〈J ′

b(vn), vn〉
]

= lim
n→∞

{
1
4
‖vn‖2 +

∫
R3

K(x)
[
1
4
f̃(x, vn)vn − F̃ (x, vn)

]
dx

}

≥ 1
4

lim inf
n→∞

[∫
R3

|∇vn|2dx + (1 − θ0)
∫
R3

V (x)|vn|2dx

]

+ lim inf
n→∞

∫
R3

{
K(x)

[
1
4
f̃(x, vn)vn − F̃ (x, vn)

]
+

θ0

4
V (x)|vn|2

}
dx

≥ 1
4

[∫
R3

|∇vb|2dx + (1 − θ0)
∫
R3

V (x)|vb|2dx

]

+
∫
R3

{
K(x)

[
1
4
f̃(x, vb)vb − F̃ (x, vb)

]
+

θ0

4
V (x)|vb|2

}
dx
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=
1
4
‖vb‖2 +

∫
R3

K(x)
[
1
4
f̃(x, vb)vb − F̃ (x, vb)

]
dx

= Jb(vb) − 1
4
〈J ′

b(vb), vb〉

≥ sup
s,t≥0

[
Jb(sv+

b + tv−
b ) +

1 − s4

4
〈J ′

b(vb), v+
b 〉 +

1 − t4

4
〈J ′

b(vb), v−
b 〉

]

− 1
4
〈J ′

b(vb), vb〉
≥ sup

s,t≥0
Jb(sv+

b + tv−
b ) ≥ mb,

which implies that

lim
n→∞

∫
R3

|∇vn|2dx =
∫
R3

|∇vb|2dx (2.17)

and

lim
n→∞

∫
R3

V (x)|vn|2dx =
∫
R3

V (x)|vb|2dx. (2.18)

Hence, vn → vb in H, then we know that Jb(vb) = mb and vb ∈ Mb. �

Lemma 2.10. Suppose that (V ), (K), and (f̃1)–(f̃4) are satisfied. If v0 ∈ Mb

and Jb(v0) = mb, then v0 is a critical point of Jb.

Proof. By contradiction, let v0 = v+
0 +v−

0 ∈ Mb,Jb(v0) = mb and J ′
b(v0) �=

0. Then, there exist δ > 0 and σ > 0, such that

v ∈ H, ‖v − v0‖ ≤ 3δ ⇒ ‖Jb(v)‖ ≥ σ. (2.19)

By Corollary 2.4, one has

Jb(sv+
0 + tv−

0 ) ≤ Jb(v0) − (1 − θ0)(1 − s2)2

4
‖v+

0 ‖2 − (1 − θ0)(1 − t2)2

4
‖v−

0 ‖2

= mb − (1 − θ0)(1 − s2)2

4
‖v+

0 ‖2 − (1 − θ0)(1 − t2)2

4
‖v−

0 ‖2.

(2.20)
Let D = (0.5, 1.5) × (0.5, 1.5). It follows from (2.20) that:

κ := max
(s,t)∈∂D

Jb(sv+
0 + tv−

0 ) < mb. (2.21)

For ε := min{(mb − κ)/3, 1, σδ/8}, S := B(u0, δ), ([47], Lemma 2.3) yields a
deformation η ∈ C([0, 1] × H,H), such that

(i) η(1, v) = v if v /∈ J −1
b ([mb − 2ε,mb + 2ε]) ∩ S2δ.

(ii) η(1,J mb+ε
b ∩ B(v0, δ)) ⊂ J mb−ε

b .
(iii) Jb(η(1, v)) ≤ Jb(v), ∀ v ∈ H.

By Corollary 2.5, Jb(sv+
0 + tv−

0 ) ≤ Jb(v0) = mb for s, t ≥ 0, then it follows
from iii) that:

Jb(η(1, sv+
0 + tv−

0 )) ≤ mb − ε, ∀ s, t ≥ 0, |s − 1|2 + |t − 1|2 < δ2/‖v0‖2.
(2.22)
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On the other hand, by (iii) and (2.20), for any s, t ≥ 0, |s − 1|2 + |t − 1|2 ≥
δ2/‖v0‖2, one has

J (η(1, sv+
0 + tv−

0 )) ≤ Jb(sv+
0 + tv−

0 )

≤ mb − (1 − θ0)(1 − s2)2

4
‖v+

0 ‖2− (1 − θ0)(1 − t2)2

4
‖v−

0 ‖2

≤ mb − (1 − θ0)δ2

8‖v0‖2
min{‖v+

0 ‖2, ‖v−
0 ‖2}. (2.23)

Combining (2.22) with (2.23), we get

max
(s,t)∈D̄

Jb(η(1, sv+
0 + tv−

0 )) < mb. (2.24)

Moreover, g(s, t) := sv+
0 + tv−

0 . By an argument similar as [4,41,42], we can
get η(1, g(D)) ∩ Mb �= ∅. Since mb := infv∈Mb

Jb(v), this is a contradiction.
The proof is completed. �

3. Sign-changing solutions

Proof of Theorem 1.1. By (f1)–(f3), we know that (f̃1)–(f̃3) hold. In view
of Lemmas 2.9 and 2.10, there exists vb ∈ Mb, such that Jb(vb) = mb and
J ′

b(vb) = 0. Thus, vb is a sign-changing solution of (1.1). Next, we prove
that vb has exactly two nodal domains. Let vb = v1 + v2 + v3, where

v1 ≥ 0, v2 ≤ 0, Ω1 ∩ Ω2 = ∅, v1|Ω2∪Ω3 = v2|Ω1∩Ω3 = v3|Ω1∩Ω2 = 0,

(3.1)
Ω1 := {x ∈ R

3 : v1(x) > 0}, Ω2 := {x ∈ R
3 : v2(x) < 0},

Ω3 := R
3\(Ω1 ∪ Ω2),

(3.2)

where Ω1 and Ω2 are connected open subsets of R3.
Setting w = v1 + v2, we see that w+ = v1 and w− = v2, i.e., w± �= 0.

By (1.17), (1.18), (2.1), (2.12), and (3.1), we have

mb = Jb(vb) = Jb(vb) − 1
4
〈J ′

b(vb), vb〉

= Jb(w) + Jb(v3) +
b

2
‖∇w‖2

2‖∇v3‖2
2

−1
4

[〈J ′
b(w), w〉 + 〈J ′

b(w3), w3〉 + 2b‖∇w‖2
2‖∇v3‖2

2

]

≥ sup
s,t≥0

[
Jb(sw+ + tw−) +

1 − s4

4
〈J ′

b(w), w+〉 +
1 − t4

4
〈J ′

b(w), w−〉
]

−1
4
〈J ′

b(w), w〉 + Jb(v3) − 1
4
〈J ′

b(v3), v3〉

≥ sup
s,t≥0

[
Jb(sw+ + tw−) +

bs4

4
‖∇w+‖2

2‖∇v3‖2
2 +

bt4

4
‖∇w−‖2

2‖∇v3‖2
2

]

+
1
4
‖v3‖2 +

∫
R3

K(x)
[
1
4
f̃(x, v3)v3 − F̃ (x, v3)

]
dx
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≥ sup
s,t≥0

Jb(sw+ + tw−) +
(1 − θ0)

4
‖v3‖2

≥ mb +
(1 − θ0)

4
‖v3‖2,

which implies that v3 = 0. Therefore, vb has exactly two nodal domains. �

4. Ground state solutions of Nehari type

In this section, we will use non-Nehari manifold method to seek ground state
solutions of Nehari type for (1.1). Before stating our results, we need to state
the following lemmas and corollaries.

Lemma 4.1. Suppose that (V ), (K), and (f̃1)–(f̃4) are satisfied. Then

Jb(v) ≥ Jb(tv)+
1 − t4

4
〈J ′

b(v), v〉+(1−θ0)(1−t2)2

4
‖v‖2, ∀ v ∈ H, t ≥ 0.

(4.1)

Corollary 4.2. Suppose that (V ), (K), and (f̃1)–(f̃4) are satisfied. Then, for
any v ∈ Nb

Jb(v) ≥ Jb(tv) +
(1 − θ0)(1 − t2)2

4
‖v‖2, ∀ t ≥ 0. (4.2)

Corollary 4.3. Suppose that (V ), (K), and (f̃1)–(f̃4) are satisfied. Then, for
any v ∈ Nb

Jb(v) = max
t≥0

Jb(tv). (4.3)

Lemma 4.4. Suppose that (V ), (K), and (f̃1)–(f̃4) are satisfied. If v ∈
H\{0}, then there exists a unique tv > 0, such that tvv ∈ Nb.

Lemma 4.5. Suppose that (V ), (K), and (f̃1)–(f̃4) are satisfied. Then

inf
v∈Nb

Jb(v) = cb = inf
v∈H,v �=0

max
t≥0

Jb(tv).

Lemma 4.6. Suppose that (V ), (K), and (f̃1)–(f̃4) are satisfied. Then, there
exist a constant c∗ ∈ (0, cb] and a sequence {vn} ⊂ H satisfying

Jb(vn) → c∗, ‖J ′
b(vn)‖(1 + ‖vn‖) → 0. (4.4)

Proof. Since (f̃1), (f̃2), and (1.18) hold, then there exist δ0 > 0 and ρ0 > 0,
such that

v ∈ H, ‖v‖ = δ0 ⇒ Jb(v) ≥ ρ0. (4.5)
Choose wk ∈ Nb, such that

cb ≤ Jb(wk) < cb +
1
k

, k ∈ N. (4.6)

Since Jb(wk) < 0 for large t > 0, then according to [12] and Mountain Pass
Lemma, we can derive that there exists a sequence {vk,n}n∈N ⊂ H satisfying

Jb(vk,n) → ck, ‖J ′
b(vk,n)‖(1 + ‖vk,n‖) → 0, k ∈ N, (4.7)
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where ck ∈ [ρ0, supt≥0 Jb(twk)]. By Corollary 4.5, one has

Jb(wk) ≥ Jb(twk), ∀ t ≥ 0,

which implies that Jb(wk) = supt≥0 Jb(twk). Hence, by (4.6) and (4.9), we
have

Jb(vk,n) < cb +
1
k

, ‖J ′
b(vk,n)‖(1 + ‖vk,n‖) → 0, k ∈ N. (4.8)

Now, we can choose a sequence {nk} ⊂ N, such that

Jb(vk,nk
) < cb +

1
k

, ‖J ′
b(vk,nk

)‖(1 + ‖vk,nk
‖) <

1
k

, k ∈ N. (4.9)

Let vk = vk,nk
, k ∈ N. Then, up to a subsequence, we have

Jb(vn) → c∗ ∈ [ρ0, cb], ‖J ′
b(vn)‖(1 + ‖vn‖) → 0.

This completes the proof. �

Proof of Theorem 1.2. By (f1)–(f3), we know that (f̃1)–(f̃3) hold. From
Lemma 4.8, we can deduce that there exists a sequence {vn} ⊂ H satisfying
(4.4), such that

Jb(vn) → c∗, 〈J ′
b(vn), vn〉 → 0. (4.10)

From (1.17), (1.18), (2.12), and (4.10), one has for large n ∈ N

c∗ + 1 ≥ Jb(vn) − 1
4
〈J ′

b(vn), vn〉 ≥ 1 − θ0

4
‖vn‖2.

This implies that {vn} is bounded in H. By a standard argument, we can
prove that there exists a v0 ∈ H\{0}, such that J ′

b(v0) = 0. This shows that
v0 ∈ Nb is a non-trivial solution of (1.1) and Jb(v0) ≥ cb. On the other hand,
using (1.17), (1.18), (2.12), the weak semicontinuity of norm, and Fatou’s
Lemma, we have

cb ≥ c∗ = lim
n→∞

(
Jb(vn) − 1

4
〈J ′

b(vn), vn〉
)

= lim
n→∞

[
1
4
‖vn‖2 +

∫
R3

K(x)
(

1
4
f̃(x, vn)vn − F̃ (x, vn)

)]

≥ 1
4

lim inf
n→∞

(∫
R3

|∇vn|2dx + (1 − θ0)
∫
R3

V (x)|vn|2dx

)

+ lim inf
n→∞

∫
R3

{
K(x)

(
1
4
f̃(x, vn)vn − F̃ (x, vn)

)
+

θ0V (x)
4

|vn|2
}

dx

≥ 1
4

(∫
R3

|∇v0|2dx + (1 − θ0)
∫
R3

V (x)|v0|2dx

)

+
∫
R3

{
K(x)

(
1
4
f̃(x, v0)v0 − F̃ (x, v0)

)
+

θ0V (x)
4

|v0|2
}

dx

=
1
4
‖v0‖2 +

∫
R3

K(x)
(

1
4
f̃(x, v0)u0 − F̃ (x, v0)

)
dx

= Jb(v0) − 1
4
〈J ′

b(v0), v0〉 = Jb(v0).

Hence, we have Jb(v0) ≤ c∗, and so, Jb(v0) = cb = infNb
Jb > 0.



3144 J. Chen et al. JFPTA

From Theorem 1.1, there exists a vb ∈ Mb, such that Jb(vb) = mb.
Thus, by (1.16), Corollary 2.5, and Lemma 4.7, one has

mb = Jb(vb) = sup
s,t≥0

Jb(sv+
b + tv−

b )

= sup
s,t≥0

[
Jb(sv+

b ) + Jb(tv−
b ) +

bs2t2

2
‖∇v+

b ‖2
2‖∇v−

b ‖2
2

]

> sup
s≥0

Jb(sv+
b ) + sup

t≥0
Jb(tv−

b )

≥ 2cb.

The proof is completed. �

5. The convergence property

Now, we are in a situation to give the proof of Theorem 1.3.

Proof of Theorem 1.3. By (f1)–(f3), we know that (f̃1)–(f̃3) hold. In Sect. 2,
b = 0 is allowed in the argument. Therefore, under the assumptions of Theo-
rem 1.3, there exists a w0 ∈ M0, such that J ′

0(w0) = 0 and J0(w0) = m0 =
infv∈M0 J0(v), that is (1.4), has a least energy sign-changing solution, which
changes sign only once.

For any b > 0, let vb ∈ Mb be a sign-changing solution of (1.1) obtained
in Theorem 1.2, which changes sign only once and satisfies Jb(vb) = mb.

Choose ϑ0 ∈ C∞
0 (R3), such that ϑ±

0 �= 0. From (K) and (f̃1)–(f̃3), there
exist β1 > 0 and β2 ≥ max{‖∇ϑ+

0 ‖4
2, ‖∇ϑ−

0 ‖4
2}, such that for any s, t ∈ R∫

R3
K(x)F (x, sϑ+

0 )dx ≥ β2|s|4 − β1,∫
R3

K(x)F (x, tϑ−
0 )dx ≥ β2|t|4 − β1.

(5.1)

For any b ∈ [0, 1], it follows from (1.17) and Lemma 2.5 that:

Jb(vb) = mb ≤ max
s,t≥0

Jb(sϑ+
0 + tϑ−

0 )

= max
s,t≥0

{
s2

2
‖ϑ+

0 ‖2 +
bs4

4
‖∇ϑ+

0 ‖4
2 −

∫
R3

K(x)F (x, sϑ+
0 )dx

+
t2

2
‖ϑ−

0 ‖2 +
bt4

4
‖∇ϑ−

0 ‖4
2 −

∫
R3

K(x)F (x, tϑ−
0 )dx

+
bs2t2

2
‖∇ϑ+

0 ‖2
2‖∇ϑ−

0 ‖2
2

}

≤ max
s,t≥0

{
s2

2
‖ω+

0 ‖2 +
bs4

2
‖∇ϑ+

0 ‖4
2 + 2β1 − β2s

4 +
t2

2
‖ϑ−

0 ‖2

+
bt4

2
‖∇ϑ−

0 ‖4
2 − β2t

4 +
bs2t2

2
‖∇ϑ−

0 ‖2
2‖∇ϑ−

0 ‖2
2

}

≤ max
s≥0

[
s2

2
‖ϑ+

0 ‖2 − s4

2
‖∇ϑ+

0 ‖4
2

]
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+ max
t≥0

[
t2

2
‖ϑ−

0 ‖2 − t4

2
‖∇ϑ−

0 ‖4
2

]
+ 2β1

:= Λ0 > 0.

By (1.17), (1.18), and (2.12), we get

Λ0 + 1 ≥ Jbn(vbn) − 1
4
〈J ′

bn(vbn), vbn〉 ≥ (1 − θ0)
4

‖vbn‖2,

which implies that {vbn} is bounded in H. Then, there exists a subsequence
of {bn}, still denoted by {bn}, and v0 ∈ H, such that vbn ⇀ v0 in H. Similar
to Lemma 2.9, we conclude that v±

bn
→ v±

0 �= 0 in H. Note that

〈J ′
0(v0), ϕ〉 =

∫
R3

(∇v0∇ϕ + V (x)v0ϕ)dx −
∫
R3

K(x)f̃(x, v0)ϕdx

= lim
n→∞

[∫
R3

(∇vbn∇ϕ + V (x)vbnϕ)dx −
∫
R3

K(x)f̃(x, vbn)ϕdx

]

= lim
n→∞〈J ′

bn(vbn), ϕ〉 = 0 ∀ϕ ∈ C∞
0 (R3).

This shows that J ′
0(v0) = 0, and then, v0 ∈ M0 and J0(v0) ≥ m0. Next,

we claim that J0(v0) = m0. Let bn ∈ [0, 1], then it follows from (K) and (f̃3)
that there exists K0 > 0, such that for all s ≥ K0 or t ≥ K0,

Jbn(sw+
0 + tw−

0 )

=
s2

2
‖w+

0 ‖2 +
bns4

4
‖∇w+

0 ‖4
2 −

∫
R3

K(x)F̃ (x, sw+
0 )dx +

t2

2
‖w−

0 ‖2

+
bnt4

4
‖∇w−

0 ‖4
2 −

∫
R3

K(x)F̃ (x, tw−
0 )dx +

bns2t2

2
‖∇w+

0 ‖2
2‖∇w−

0 ‖2
2

≤ s2

2
‖w+

0 ‖2 +
s4

2
‖∇w+

0 ‖4
2 −

∫
R3

K(x)F̃ (x, sw+
0 )dx

+
t2

2
‖w−

0 ‖2 +
t4

2
‖∇w−

0 ‖4
2 −

∫
R3

K(x)F̃ (x, tw−
0 )dx

< 0. (5.2)

By Lemma 2.6, there exists (sn, tn), such that snw+
0 + tnw−

0 ∈ Mbn which,
together with (5.2), implies 0 < sn, tn < K0. Hence, from (1.17), (1.18), and
(2.1), we have

m0 = J0(w0)

= Jbn(w0) − bn

4
‖∇w0‖4

2

≥ Jbn(snw+
0 + tnw−

0 ) +
1 − s4

n

4
〈J ′

bn(w0), w+
0 〉 +

1 − t4n
4

〈J ′
bn(w0), w−

0 〉

−bn

4
‖∇w0‖4

2

≥ mbn − 1 + K4
0

4

∣∣〈J ′
bn(w0), w+

0 〉∣∣ − 1 + K4
0

4

∣∣〈J ′
bn(w0), w−

0 〉∣∣
−bn

4
‖∇w0‖4

2
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= mbn − (1 + K4
0 )bn

4
‖∇w0‖2

2‖∇w+
0 ‖2

2 − (1 + K4
0 )bn

4
‖∇w0‖2

2‖∇w−
0 ‖2

2

−bn

4
‖∇w0‖4

2,

which implies that
lim sup

n→∞
mbn ≤ m0. (5.3)

By (1.17) and (5.3), one has

m0 ≤ J0(v0) = lim sup
n→∞

Jbn(vbn) = lim sup
n→∞

mbn ≤ m0.

This shows that J0(v0) = m0. �
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