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Abstract
In this paper, we investigate Lie bialgebra structures on nondegenerate flat Lie algebras, which
are solvable Lie algebras admitting an orthogonal decomposition into an abelian subalgebra
and an abelian ideal. These algebras correspond precisely to the Lie algebras of Lie groups
endowed with a flat left-invariant Riemannian metric. We establish a decomposition theorem
for 1-cocycles, showing that any 1-cocycle can be expressed as the sum of a coboundary and
a cocycle mapping the abelian subalgebra into the space of invariant bivectors. Using the Big
Bracket formalism ; an algebraic framework that efficiently encodes Lie bialgebra structures,
we obtain a classification of such structures on nondegenerate flat Lie algebras. Finally, we
illustrate these structures through a series of examples.

Keywords: Lie bialgebras, Poisson-Lie groups, flat Lie algebras, Yang-Baxter equation, Big
Bracket.

1. Introduction

Lie bialgebras, first introduced by Drinfeld in 1983 [5], are fundamental algebraic struc-
tures that arise in the study of Poisson-Lie groups and quantum groups. They constitute the
infinitesimal counterpart of Poisson-Lie group structures and play an important role in the
quantization of these structures.

A Poisson-Lie group is a Lie group endowed with a Poisson structure, such that its multi-
plication is a Poisson map.The Lie algebra of a Poisson-Lie group is called a Lie bialgebra.

A Lie bialgebra consists of a Lie algebra g along with a 1-cocycle ξ : g →
∧2 g such that

the transpose map ξt :
∧2 g∗ → g∗ defines a Lie bracket on the dual space g∗. Lie bialgebras

play an important role in the theory of integrable systems and noncommutative geometry.
An important class of solvable Lie algebras are the flat Lie algebras, which arise naturally

in the study of homogeneous Riemannian manifolds with flat left invariant metrics. Milnor
characterized flat Lie algebras as being 2-step solvable with an orthogonal decomposition into
an abelian subalgebra and an abelian ideal [10]. Further refinements in [3],[2] led to the decom-
position as g = s⊕z⊕[g, g] where s is an abelian subalgebra, z is the center, and its commutator
ideal [g, g] is abelian even-dimensional.

The study of Lie bialgebra structures on flat Lie algebras is motivated by several factors:

• Connections to deformation quantization: In the context of deformation quantization,
Poisson-Lie groups play a crucial role in establishing connections between classical and
noncommutative geometry. The flatness condition investigated in this work has been
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shown by Hawkins [7],[8] to be related to deformations issues arising in formal deforma-
tion quantization of Poisson structures and therefore one should expect that quantizing
Poisson-Lie groups which integrates the Lie bialgebras listed here should produce quan-
tum groups with a good behaviours in terms of noncommutative geometry, following the
framework developed by Connes.

• Expanding classification results: The classification of Lie bialgebra structures on specific
classes of Lie algebras is an important problem that provides insights into the correspond-
ing Poisson-Lie group structures. For semisimple Lie algebras, Belavin and Drinfeld pro-
vided a complete classification in terms of r-matrices satisfying the classical Yang-Baxter
equation [4]. Other classifications have been obtained for low dimensional Lie algebras
[11],[15]. However, for general solvable Lie algebras, the classification problem becomes
much more challenging due to the lack of powerful representation-theoretic tools available
in the semisimple case.

In this paper, we use the Big Bracket formalism to facilitate our study of Lie bialgebras on
flat Lie algebras. The Big Bracket is an algebraic tool used to encode the structure of a Lie
bialgebra in a compact form, which simplifies calculations. Using this formalism, we aim to
provide a solution to the open problem of classifying all possible Lie bialgebra structures that
can arise on nondegenerate flat Lie algebras. This work is motivated by our prior research [1].

Main result.. We establish a decomposition theorem for cocycles on flat Lie algebras, which
states that any cocycle can be expressed as the sum of a coboundary and a specific type of
cocycle. The latter cocycle maps elements from its abelian subalgebra to its set of invariant
bivectors. Furthermore, we provide explicit descriptions of Lie bialgebra structures for various
classes of flat Lie algebras using the Big Bracket formalism.

The paper is organized as follows: In Section 2, we review the necessary background on Lie
bialgebras and flat Lie algebras, including their characterization and normal forms. Section
3 presents our main results, including the theorem on the decomposition of cocycles and the
classification of Lie bialgebra structures. In Section 4, we discuss several examples illustrating
the application of our results to specific classes of flat Lie algebras.

The results developed in this work may provide a starting point for investigating deforma-
tions of these structures, their cohomological properties, and potential relationships with other
classes of Lie bialgebras.

2. Preliminaries

2.1. Lie Bialgebras
Let (g, µ) be a real Lie algebra and let ξ : g →

∧2 g be a 1-cocycle with respect to the
adjoint representation, meaning that for all x, y ∈ g

ξ([x, y]) = adx ξ(y)− ady ξ(x).

Here, the adjoint action is extended to
∧2 g by setting

adx(y ∧ z) = adx(y) ∧ z + y ∧ adx(z)
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for every x, y, z ∈ g.
The pair (g, ξ) is called a Lie bialgebra if the transpose

ξt :
2∧
g∗ → g∗

defines a Lie bracket on the dual space g∗. This structure serves as the infinitesimal counterpart
to the Poisson-Lie group structure (see [12]).

A linear map φ : (g, ξ) → (h, δ) is called a morphism of Lie bialgebras if it is a Lie algebra
homomorphism and satisfies

δ ◦ φ = (φ ∧ φ) ◦ ξ.
This condition is succinctly expressed by the commutative diagram

g h

∧2 g
∧2 h.

φ

ξ δ

φ∧φ

2.1.1. Characteristic Derivation
For a Lie bialgebra (g, µ, ξ), the characteristic derivation is an endomorphism of g defined

as the composition

Dξ : g
ξ−→

2∧
g

µ−→ g.

This map captures how the cobracket interact with the Lie structure. It is a derivation of the
Lie algebra g

Dξ([x, y]) = [Dξ(x), y] + [x,Dξ(y)] for all x, y ∈ g,

and its transpose acts as a derivation on the dual Lie algebra g∗. Moreover, Dξ is invariant
under Lie bialgebra isomorphisms [6].

Example. Let g = span{e1, e2, e3} be the Lie algebra with nontrivial brackets

[e1, e2] = e3, [e1, e3] = −e2.

Consider the family of Lie bialgebra structures on g defined by the 1-cocycles

ξ(e1) = a e1 ∧ e2 + b e1 ∧ e3,

ξ(e2) = c e1 ∧ e2 + b e2 ∧ e3,

ξ(e3) = c e1 ∧ e3 − a e2 ∧ e3.

The corresponding characteristic derivation is represented by the matrix

D =

 0 0 0
−b 0 −c
a c 0


Its characteristic polynomial is p(λ) = −λ3 − c2λ. So distinct values of c yield non-isomorphic
bialgebras.
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2.2. Flat Lie algebras
A Lie algebra g (real of finite dimension) is said to be flat if it is endowed with a positive

definite scalar product ⟨ , ⟩ for which the associated infinitesimal Levi-Civita connection, defined
for all x, y, z in g by

2⟨∇xy, z⟩ = ⟨[x, y], z⟩+ ⟨[z, x], y⟩+ ⟨[z, y], x⟩ (1)
has zero curvature

R(x, y, z) = ∇[x,y]z − (∇x∇yz −∇y∇xz) ≡ 0. (2)
In other words, the associated Lie group G of g, endowed with the unique left invariant Rie-
mannian metric extending ⟨ , ⟩ has its Levi-Civita connection flat.

Proposition 2.1 ([2], [3], [10]). Let (g, ⟨ , ⟩) be a flat Lie algebra. Then g decomposes orthog-
onally as

g = s⊕ z⊕ [g, g],

where z is the center of g, s is an abelian Lie subalgebra, [g, g] is the commutator ideal satisfying
the following conditions:

• [g, g] is abelian and even dimensional,

• adx = ∇x, for any x in z⊕ s.

Moreover, from [2], we have the following normal form of a flat Lie algebra:

g = span{s1, . . . , sk0} ⊕ span{z1, . . . , zℓ0} ⊕ span{d1, . . . , d2m} (3)

where span{d1, . . . , d2m} is the commutator ideal of g which is abelian, span{z1, . . . , zℓ0} its
center (possibly trivial) and span{s1, . . . , sk0} its abelian subalgebra such that k0 ≤ m and

[si, d2j−1] = λij d2j, [si, d2j] = −λij d2j−1 for all i = 1, . . . , k0, and j = 1, . . . ,m. (4)

Examples 2.2.
1. Any commutative Lie algebra is flat.
2. The Poincaré algebra corresponding to 2-dimensional Minkowski space, is a 3-dimensional

Lie algebra with basis {s, d1, d2}, where s generates the translations and d1, d2 generate
the Lorentz transformations. The Lie brackets are given by:

[s, d1] = d2, [s, d2] = −d1, [d1, d2] = 0,

This algebra constitutes the lowest-dimensional non-abelian flat Lie algebra and serves
as the Lie algebra of the Poincaré group, which is the isometry group of 2-dimensional
Minkowski spacetime.

Henceforth, we shall focus on noncommutative flat Lie algebras.
Remarks 2.3. 1. A flat Lie algebra g is unimodular, 2-step solvable whose nilradical is

precisely z⊕ [g, g].
2. A Lie algebra is called complete if its centre is trivial and its derivations are all inner.

However, a flat Lie algebra is not complete as there is a derivation that maps the sub-
algebra s to zero while acting as the identity on the derived subalgebra [g, g], and this
derivation is not inner.
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2.2.1. Isomorphism Class
Two flat Lie algebras

(
g1, ⟨·, ·⟩1

)
and

(
g2, ⟨·, ·⟩2

)
, are said to be isomorphic if there exists a

linear map φ : g1 → g2 that is both a Lie algebra isomorphism and an isometry with respect
to the given inner products.

Let φ be an automorphism of a flat Lie algebra
(
g, ⟨·, ·⟩

)
, endowed with a fixed scalar

product and a normal basis as specified in (4). Since φ is an automorphism, one has

φ
(
z
)
= z and φ

(
[g, g]

)
= [g, g],

which implies that φ(s) = s. Consequently, one may express

φ(si) =

k0∑
p=1

αpi sp,

where the matrix (αpi) is invertible. Moreover, we have

adφ(si)(d2j−1) = Λij d2j and adφ(si)(d2j) = −Λij d2j−1,

with

Λij =

k0∑
p=1

λpj αpi.

It follows that the restriction
adφ(si)

∣∣2
[g,g]

is represented by a diagonal matrix whose eigenvalues are {−Λ2
i1, . . . ,−Λ2

im}; each eigenvalue
−Λ2

ij has multiplicity two, with corresponding eigenvectors d2j−1 and d2j. On the other hand,
one also obtains {

ad2
φ(si)

φ(d2j−1) = −λ2
ij φ(d2j−1),

ad2
φ(si)

φ(d2j) = −λ2
ij φ(d2j).

Thus, there exists a permutation σ ∈ Sm such that for every j = 1, . . . ,m, the automorphism
φ maps the plane

Pj = Span{d2j−1, d2j}

onto Pσ(j), and the restriction φ
∣∣
Pj

is given by a 2× 2 orthogonal matrix.
The characteristic matrix of a flat Lie algebra is defined in terms of its structural constants

(see (4)). After adopting the convention that the rows correspond to the vectors

Lj = (λ1j, λ2j, . . . , λk0j), j = 1, . . . ,m,

the characteristic matrix is given by

Λ =


λ11 λ21 · · · λk01

λ12 λ22 · · · λk02
... ... . . . ...

λ1m λ2m · · · λk0m

 . (5)

5



A key property of this matrix is that it defines an injective linear map; in particular, no row is
identically zero. This property is a direct consequence of the relation

z ∩ [g, g] = {0}.

A change of orthonormal basis in [g, g] that preserves the block-diagonal structure of the
maps adsk is effected precisely by the following transformations:

1. Permutations of the planes

Pi = Span{d2i−1, d2i}, i = 1, . . . ,m;

2. Rotations of each plane Pi by an orthogonal matrix

Oi ∈ O(2).

Under these operations, the characteristic matrix Λ is transformed by permuting its row vectors
(i.e., replacing Li by Lσ(i), for some σ ∈ Sm) and by replacing a row Li with −Li whenever the
corresponding orthogonal transformation satisfies detOi = −1.

Moreover, one may perform a change of basis in [g, g] by suitably permuting the planes Pi

so that the first k0 row vectors of Λ, denoted L1, . . . , Lk0 , become linearly independent. Simul-
taneously, a corresponding change of basis in s is applied so that these vectors are transformed
into the canonical basis. As a consequence, the characteristic matrix Λ assumes the form

Λ =

(
Idk0

Λ1

)
.

From this point onward, we fix this ordered orthonormal basis of g, and all subsequent compu-
tations are carried out relative to it.

2.2.2. Nondegenerate Flat Lie Algebras
Let g be a flat Lie algebra with a normal basis as in (4). The Lie algebra g is said to be

degenerate if there exist indices i, j, k ∈ {1, . . . ,m} such that

Lk = aLi + b Lj, with a, b ∈ {−1, 1}, (6)

where Li denotes the i-th row vector of the characteristic matrix Λ. If no such relation exists,
g is referred to as nondegenerate.
Remarks 2.4.

1. The flat Lie algebra gα = span{s} ⊕ span{d1, d2, d3, d4} with the brackets

[s, d1] = d2, [s, d2] = −d1, [s, d3] = αd4, [s, d4] = −αd3, α ̸= 0

is nondegenerate for α ̸= −1, 1 and degenerate for α = ±1.
2. The definition above is coordinate-free. Indeed, the condition (6) remains invariant under

any automorphism of flat Lie algebras, as demonstrated earlier (see [1]).
3. The nondegeneracy condition ensures that certain matrices arising in our analysis of

cocycles will be invertible, which significally simplifies the classification problem.
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3. Main Theorems

3.1. Notations
Let g be a flat Lie algebra with its decomposition given by (3):

g = span{s1, . . . , sk0} ⊕ span{z1, . . . , zℓ0} ⊕ span{d1, . . . , d2m}.

Let ξ : g →
∧2 g be a cocyle on g. The coefficients of ξ(sk), ξ(zk), ξ(d2k−1), ξ(d2k) are denoted

respectively akij, a
((k))
ij , a

(2k−1)
ij , a

(2k)
ij . . . and so on, similarly for a bivector r ∈

∧2 g, namely

ξ(sk) =
∑

1≤i<j≤k0

akij si ∧ sj +
∑

1≤i≤k0
1≤j≤ℓ0

bkij si ∧ zj +
∑

1≤i≤k0
1≤j≤m

ckij si ∧ d2j−1 +
∑

1≤i≤k0
1≤j≤m

ekij si ∧ d2j

+
∑

1≤i<j≤ℓ0

fk
ij zi ∧ zj +

∑
1≤i≤ℓ0
1≤j≤m

gkij zi ∧ d2j−1 +
∑

1≤i≤ℓ0
1≤j≤m

hk
ij zi ∧ d2j

+
∑

1≤i<j≤m

mk
ij d2i−1 ∧ d2j−1 +

∑
1≤i,j≤m

nk
ij d2i−1 ∧ d2j +

∑
1≤i<j≤m

pkij d2i ∧ d2j.

For all k = 1, . . . ,m, add2k−1
r = Φk ∧ d2k and add2k r = d2k−1 ∧ Φk, where

Φk =

(
k0∑
j=2

−λjka1j

)
s1 +

k0−1∑
p=2

(
p−1∑
i=1

λikaip +

k0∑
j=p+1

−λjkapj

)
sp +

(
k0−1∑
i=1

λikaik0

)
sk0

+

ℓ0∑
j=1

(
k0∑
i=1

λikbij

)
zj +

m∑
j=1

(
k0∑
i=1

λikcij

)
d2j−1 +

m∑
j=1

(
k0∑
i=1

λikeij

)
d2j.

3.2. Cocycles of a flat Lie algebra
Consider a flat nondegenerate Lie algebra g with its normal basis as specified in (4). Let Λ

represent its characteristic matrix given in (5). Denote the rows of Λ as Li for i = 1, . . . ,m, and
let Pi be the planes generating the commutator ideal [g, g] = ⊕m

i=1Pi. The following theorem
outlines all possible 1-cocycles on g.

Theorem 3.1. Let ξ : g →
∧2 g be a cocycle on a flat nondegenerate Lie algebra g. Then ξ

can be uniquely decomposed as
ξ = ad r +R, (7)

where r ∈
∧2 g and R : g →

∧2 g is a cocycle such that

• R (s) ⊂
(∧2 g

)g
• R(Pℓ) ⊂ (s ∧ Pℓ)⊕ (z ∧ Pℓ) for all ℓ = 1, . . . ,m

Proof. • We first establish that any cocycle restricted to s can be written as ad r0+R, wher
R takes values in invariant bivectors.

• We then extend R to a cocycle on the entire g by analyzing the cocycle condition on the
commutator ideal [g, g].
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• Finally, we show that for nondegenerate flat Lie algebras, the components of the cocycle
R in

∧2[g, g] vanish identically, which completes the characterization.
Let {s∗1, . . . , s∗k0 , z

∗
1 , . . . , z

∗
ℓ0
, d∗1, . . . , d

∗
2m} be the dual basis of the dual vector space g∗. We

apply successively 2-forms α ∈
∧2 g∗ to the cocycle identities, i.e.

α (λkℓξ(d2ℓ)) = α (adsk ξ(d2ℓ−1))− α
(
add2ℓ−1

ξ(sk)
)

−α (λkℓξ(d2ℓ−1)) = α (adsk ξ(d2ℓ))− α (add2ℓ ξ(sk)) .

We apply successively s∗i ∧ d∗2ℓ, s∗i ∧ d∗2ℓ−1, z∗i ∧ d∗2ℓ, z∗i ∧ d∗2ℓ and we get{
λkℓe

(2ℓ)
iℓ = λkℓc

(2ℓ−1)
iℓ − s∗i (Φℓ) ,

−λkℓc
(2ℓ−1)
iℓ = −λkℓe

(2ℓ)
iℓ + s∗i (Φℓ)

,

{
λkℓh

(2ℓ)
iℓ = λkℓg

(2ℓ−1)
iℓ − z∗i (Φℓ) ,

−λkℓg
(2ℓ−1)
iℓ = −λkℓh

(2ℓ)
iℓ + z∗i (Φℓ)

i.e. e
(2ℓ)
iℓ = c

(2ℓ−1)
iℓ , h(2ℓ)

iℓ = g
(2ℓ−1)
iℓ , s∗i (Φℓ) = 0 and z∗i (Φℓ) = 0. But we have

(
s∗i (Φℓ)

)
1≤ℓ≤m
1≤i≤k0

=


λ11 λ21 . . . λk01

λ12 λ22 . . . λk02

. . . . . . . . . .
λ1m λ2m . . . λk0m




0 ak12 · · · ak1k0
−ak12 0 · · · ak2k0... ... . . . ...
−ak1k0 −ak2k0 · · · 0

 .

We deduce from the injectivity of Λ that akij ≡ 0 and similarly bkij ≡ 0.
We have for all k, ℓ = 1, . . . , k0, adsk ξ(sℓ) = adsℓ ξ(sk), namely

λkjc
ℓ
ij − λℓjc

k
ij = 0.

This implies that the vectors (c1ij, . . . , c
k0
ij ) and Lj = (λ1j, . . . , λk0j) are linearly dependent.

So there exists a real number cij such that ckij = cijλkj. Similarly, for the other coefficients:
ekij = eijλkj, gkij = gijλkj, hk

ij = hijλkj.
We have{

−λℓip
k
ij + λℓjm

k
ij = −λkip

ℓ
ij + λkjm

ℓ
ij,

λℓjp
k
ij − λℓim

k
ij = λkjp

ℓ
ij − λkim

ℓ
ij

,

{
−λℓin

k
ji + λℓjn

k
ij = −λkin

ℓ
ji + λkjn

ℓ
ij,

λℓjn
k
ji − λℓin

k
ij = λkjn

ℓ
ji − λkin

ℓ
ij

then {
(λℓj − λℓi)

(
pkij +mk

ij

)
= (λkj − λki)

(
pℓij +mℓ

ij

)
,

(λℓj + λℓi)
(
pkij −mk

ij

)
= (λkj + λki)

(
pℓij −mℓ

ij

)
therefore {

pkij = Aijλkj +Bijλki,
mk

ij = −Bijλkj − Aijλki
, likewise

{
nk
ji = aijλkj + bijλki,

nk
ij = −bijλkj − aijλki

So ξ(x) = adx r0 +R(x) for all x ∈ s with

R(sk) =
∑

1≤i<j≤ℓ0

fk
ij zi ∧ zj +

m∑
i=1

nk
ii d2i−1 ∧ d2i, and
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r0 =
∑

1≤i≤k0
1≤j≤m

eij si ∧ d2j−1 +
∑

1≤i≤k0
1≤j≤m

−cij si ∧ d2j +
∑

1≤i≤ℓ0
1≤j≤m

hij zi ∧ d2j−1 +
∑

1≤i≤ℓ0
1≤j≤m

−gij zi ∧ d2j

+
∑

1≤i<j≤m

aij d2i−1 ∧ d2j−1 +
∑

1≤i<j≤m

Bij d2i−1 ∧ d2j +
∑

1≤i<j≤m

−Aij d2j−1 ∧ d2i

+
∑

1≤i<j≤m

−bij d2i ∧ d2j.

Note that r0 is uniquely determined mod s-invariant elements of
∧2 g, namely

r0 ∈ (s ∧ [g, g])⊕ (z ∧ [g, g])⊕
(

⊕
1≤i<j≤m

Pi ∧ Pj

)
.

We have

ξ
∣∣
s⊕z

= ad r0 +R, with R
(
s⊕ z

)
⊂
( 2∧

g
)g
.

Define
R̂ = ξ − ad r0,

which is a 1-cycle extending R to [g, g], uniquely determined modulo
(∧2 g

)s. As a cocycle, we
have

R̂
(
[g, g]

)
⊂ g ∧ [g, g],

and for every k = 1, . . . , k0 and ℓ = 1, . . . ,m,{
λkℓ R̂(d2ℓ) = adsk R̂(d2ℓ−1),

−λkℓ R̂(d2ℓ−1) = adsk R̂(d2ℓ).
(8)

Moreover, for all 1 ≤ k, ℓ ≤ m, the following relations hold:
add2k−1

R̂(d2ℓ) = add2ℓ R̂(d2k−1),

add2k−1
R̂(d2ℓ−1) = add2ℓ−1

R(d2k−1),

add2k R̂(d2ℓ) = add2ℓ R̂(d2k).

(9)

In particular, for any distinct indices k, ℓ ∈ {1, . . . ,m}, we obtain
k0∑
i=1

λik c
(2ℓ−1)
iℓ = 0,

k0∑
i=1

λik e
(2ℓ−1)
iℓ = −

k0∑
i=1

λiℓ e
(2k−1)
ik .

In matrix form, if we denote by Λ the characteristic matrix and set

C =
(
c
(2ℓ−1)
iℓ

)
1≤i≤k0
1≤ℓ≤m

=
(
C0 | C1

)
,

then ΛC is a diagonal matrix:

ΛC =

(
Idk0

Λ1

)(
C0 | C1

)
=


∗ 0 · · · 0

0 ∗ · · · 0
... ... . . . ...
0 0 · · · ∗

 .
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This implies that

C0 =


c
(1)
11 · · · 0
... . . . ...
0 · · · c

(2k0−1)
k0k0

 , C1 = 0, and Λ1C0 = 0;

that is,

c
(2j−1)
ij = 0 for all i, j = 1, . . . , k0 (j ̸= i) and for all j = k0 + 1, . . . ,m.

Similarly, if we define
E =

(
e
(2ℓ−1)
iℓ

)
1≤i≤k0
1≤ℓ≤m

=
(
E0 | E1

)
,

then ΛE is skew-symmetric:

ΛE =

(
Idk0

Λ1

)(
E0 | E1

)
=

(
S −At

A S ′

)
,

which shows that E0 = S and E1 = S Λt
1. On the other hand, one has

k0∑
i=1

e
(2ℓ−1)
iℓ si ∧ d2ℓ = add2ℓ−1

(∑
i,j

aij si ∧ sj

)

if and only if

(
E0 | E1

)
= S

(
Idk0 | Λt

1

)
, with S =


0 a12 · · · a1k0

−a12 0 · · · a2k0
... ... . . . ...

−a1k0 −a2k0 · · · 0

 .

Thus, we obtain E0 = S and E1 = S Λt
1. In a similar fashion, the identity

ℓ0∑
j=1

h
(2ℓ−1)
jℓ zj ∧ d2ℓ = add2ℓ−1

(∑
bij si ∧ zj

)

holds if and only if
B = H0 and H1 = H0Λ

t
1,

where B =
(
bij
)
1≤i,j≤ℓ0

.
In summary, there exists a bivector

r1 ∈
( 2∧

s
)
⊕
(
s ∧ z

)
such that

R̂ = ad r1 +R,

10



where R is the non-exact cocycle extending R to [g, g]. Henceforth, we will simply denote R
by R.

For the coefficients of R(d2ℓ−1), R(d2ℓ) in
∧2[g, g] we derive the following systems from the

cocycle condition:
λkℓ 0 λkj −λki

0 λkℓ −λki λkj

λkj −λki λkℓ 0
−λki λkj 0 λkℓ




m
(2ℓ)
ij

p
(2ℓ)
ij

n
(2ℓ−1)
ij

n
(2ℓ−1)
ji

 =


0
0
0
0

 =


λkℓ 0 −λkj λki

0 λkℓ λki −λkj

−λkj λki λkℓ 0
λki −λkj 0 λkℓ



m

(2ℓ−1)
ij

p
(2ℓ−1)
ij

n
(2ℓ)
ij

n
(2ℓ)
ji

 .

The matrices M(a, b, c) =

(
a 0 b c
0 a c b
b c a 0
c b 0 a

)
, where a, b, c ∈ R, are commuting, diagonalizable and their

eigenvalues are a− b− c, a− b+ c, a+ b− c, a+ b+ c with corresponding eigenvectors
−1
−1
1
1

 ,


1

−1
−1
1

 ,


−1
1

−1
1

 ,


1
1
1
1

 .

Since g is nondegenerate, then 0 is not an eigenvalue of M(λkℓ, λkj,−λki), for some k. Then all
the coefficients of R(d2ℓ−1) and R(d2ℓ) in Pi ∧ Pj are zero.

Remarks 3.2. 1. The decomposition ξ = ad r +R is unique.
2. This decomposition remains valid in the case of degenerate flat Lie algebras; however, the

cocycle R may have non-zero coefficients in
∧2[g, g].

Having established the decomposition of cocycles on flat Lie algebras, we now introduce a
powerful formalism that will allow us to characterize when such a cocycle defines a Lie bialgebra
structure.

3.3. Cobrackets on flat Lie algebras
In this section, we will introduce the concept of the Big Bracket and utilize it to determine

all possible cobrackets on nodegenerate flat Lie algebras.

3.3.1. Big brackets
The Big Bracket provides an elegant and powerful framework for studying Lie bialgebras

by unifying the Lie algebra and Lie coalgebra structures into a single mathematical object.
This approach allows us to express the compatibility conditions between these structures in a
compact form, simplifying both theoretical analysis and concrete calculations.

Let V be a finite-dimensional vector space over the real field K = R, and let V ∗ be its dual
vector space. We consider the exterior algebra∧

(V ∗ ⊕ V ) = ⊕
k≥−2

(
⊕

p+q=k

∧q+1
(V ∗)⊗

∧p+1
(V )

)
,

We say that an element σ of
∧
(V ∗ ⊕ V ) is of bidegree (p, q) and of degree |σ| = p + q if it

belongs to
∧(p,q)(V ) =

∧q+1(V ∗)⊗
∧p+1(V ).

11



The big bracket is the graded Lie-algebra structure J·, ·K on the graded vector space
∧
(V ∗⊕

V ) = ⊕k≥−2

∧(p,q)(V )

J·, ·K :∧(p,q)
(V )×

∧(p′,q′)
(V ) →

∧(p+p′,q+q′)
(V )

uniquely determined by the following properties:

(i) Jσ, σ′K = 0, if σ and σ′ both belong to K⊕ V or to K⊕ V ∗.
(ii) for all σ ∈ V , σ′ ∈ V ∗, Jσ, σ′K = σ′(σ),
(iii) for all σ ∈

∧
(V ⊕ V ∗) of degree k, Jσ, ·K is a graded derivation, i.e., for all σ′ and σ′′, of

degree k′ and k′′

Jσ, σ′ ∧ σ′′K = Jσ, σ′K ∧ σ′′ + (−1)kk
′
σ′ ∧ Jσ, σ′′K.

Additionally, as a graded Lie algebra, we have the graded anticommutativity property: for all
σ, σ ∈ ∧k(V ⊕ V ∗) of degree k an k′

Jσ, σ′K = −(−1)kk
′Jσ′, σK, (10)

and the graded Jacobi identity, i.e. Jσ, ·K is a graded derivation of degree k,

Jσ, Jσ′, σ′′KK = JJσ, σ′K, σ′′K + (−1)kk
′Jσ′, Jσ, σ′′KK. (11)

The explicit formula for the big bracket of decomposable elements is as follows. For ξ ⊗ x ∈∧q+1(V ∗)⊗
∧p+1(V ) and η ⊗ y ∈

∧m+1(V ∗)⊗
∧ℓ+1(V )

Jξ ⊗ x, η ⊗ yK = (−1)pm+p

p∑
j=0

(−1)jξ ∧ ixj
η ⊗ x0 ∧ . . . ∧ x̂j ∧ . . . ∧ xp ∧ y

− (−1)pm+q

ℓ∑
j=0

(−1)jiyjξ ∧ η ⊗ x ∧ y0 ∧ . . . ∧ ŷj ∧ . . . ∧ yℓ.

Where ixj
η denotes the interior product of a form η with a vector xj, and the hat sign denotes

an omitted factor. For a detailed treatment and for useful formulas see [13] and [14].
This bracket satisfies graded anticommutativity and the graded Jacobi identity, making∧

(V ∗ ⊕ V ) a graded Lie algebra.
The central insight for Lie bialgebra theory is that the triplet (V, µ, ξ), where µ :

∧2 V → V
and ξ : V →

∧2 V are linear maps (viewed as elements in
∧2 V ∗⊗V and V ∗⊗

∧2 V respectively),
defines a Lie bialgebra if and only if:

Jµ+ ξ, µ+ ξK = 0. (12)

This elegant equation encapsulates all the axioms of a Lie bialgebra:

• The Jacobi identity: Jµ, µK = 0.

• The co-Jacobi identity: Jξ, ξK = 0.

12



• The cocycle condition: Jµ, ξK = 0.

We will use the following useful formula: For x∗, y∗ ∈ V ∗ and r1, r2 ∈
∧2 V

Jx∗ ⊗ r1, y
∗ ⊗ r2K = −x∗ ⊗ (r2 ∧ iy∗r1)− y∗ ⊗ (r1 ∧ ix∗r2) . (13)

Lemma 3.3. Let g be a flat Lie algebra with its normal basis (4). Let ξ : g →
∧2 g be a

1-cocycle. Then the following are equivalent:

1. Jξ, ξK = 0.
2. For all x ∈ g, F (x) = 0 where

F (x) =

k0∑
p=1

ξ(sp)∧is∗pξ(x)+
ℓ0∑
p=1

ξ(zp)∧iz∗pξ(x)+
m∑
p=1

ξ(d2p−1)∧id∗2p−1
ξ(x)+

m∑
p=1

ξ(d2p)∧id∗2pξ(x).

Proof. Let ξ ∈ g∗⊗
∧2 g be a 1-cocycle on a flat Lie algebra and decompose it as ξ = ξ1+. . .+ξ4,

where ξi corresponds to the components of ξ in the normal basis. We have for any ω ∈
∧3 g∗

Jξ, ξK (si ⊗ ω) =

(Jξ1, ξ1K + 2
∑

1<j≤4

Jξ1, ξjK) (si ⊗ ω)

=− 2ω
( k0∑

p=1

ξ(sp) ∧ is∗pξ(si) +

ℓ0∑
p=1

ξ(zp) ∧ iz∗pξ(si)

+
m∑
p=1

ξ(d2p−1) ∧ id∗2p−1
ξ(si) +

m∑
p=1

ξ(d2p) ∧ id∗2pξ(si)
)
.

By considering Jξ, ξK(x⊗ ω) for all x in the basis of g, we obtain the desired result.

We now explicitly formulate the quadratic equations arising from the co-Jacobi condition .
In the tables below, coefficients associated with the cocycle R are indicated by superscripts.

ω ⟨ω, F (zi)⟩ (i = 1, . . . , ℓ0)

s∗j ∧ d∗2k−1 ∧ d∗2k 2c
(2k−1)
jk n

((i))
kk

z∗j ∧ d∗2k−1 ∧ d∗2k 2g
(2k−1)
jk n

((i))
kk +

∑
1≤p<j n

((p))
kk f

((i))
pj −

∑
j<p≤ℓ0

n
((p))
kk f

((i))
jp

z∗j ∧ z∗k ∧ z∗ℓ
∑

1≤p<ℓ f
((p))
jk f

((i))
pℓ −

∑
ℓ<p≤ℓ0

f
((p))
jk f

((i))
ℓp −

∑
1≤p<k f

((p))
jℓ f

((i))
pk

+
∑

k<p≤ℓ0
f
((p))
jℓ f

((i))
kp +

∑
1≤p<j f

((p))
kℓ f

((i))
pj −

∑
j<p≤ℓ0

f
((p))
kℓ f

((i))
jp

ω ⟨ω, F (si)⟩ (i = 1, . . . , k0)

s∗j ∧ d∗2k−1 ∧ d∗2k 2c
(2k−1)
jk ni

kk

z∗j ∧ d∗2k−1 ∧ d∗2k 2g
(2k−1)
jk ni

kk +
∑

1≤p<j n
((p))
kk f i

pj −
∑

j<p≤ℓ0
n
((p))
kk f i

jp

z∗j ∧ z∗k ∧ z∗ℓ
∑

1≤p<ℓ f
((p))
jk f i

pℓ −
∑

ℓ<p≤ℓ0
f
((p))
jk f i

ℓp −
∑

1≤p<k f
((p))
jℓ f i

pk

+
∑

k<p≤ℓ0
f
((p))
jℓ f i

kp +
∑

1≤p<j f
((p))
kℓ f i

pj −
∑

j<p≤ℓ0
f
((p))
kℓ f i

jp

13



ω ⟨ω, F (d2i−1)⟩ (i = 1, . . . ,m)

z∗j ∧ z∗k ∧ d∗2i−1

k0∑
p=1

c
(2i−1)
pi f p

jk +
ℓ0∑
p=1

g
(2i−1)
pi f

((p))
jk

z∗j ∧ z∗k ∧ d∗2i
k0∑
p=1

s∗p(Φi) f
p
jk +

ℓ0∑
p=1

(
z∗p(Φi) + h

(2i−1)
pi

)
f
((p))
jk

d∗2j−1 ∧ d∗2j ∧ d∗2i−1

k0∑
p=1

c
(2i−1)
pi np

jj +
ℓ0∑
p=1

g
(2i−1)
pi n

((p))
jj

d∗2j−1 ∧ d∗2j ∧ d∗2i
k0∑
p=1

s∗p(Φi)n
p
jj +

ℓ0∑
p=1

(
z∗p(Φi) + h

(2i−1)
pi

)
n
((p))
jj + d∗2j−1(Φi)d

∗
2j−1(Φj) + d∗2j(Φi)d

∗
2j(Φj)

If the 1-cocycle ξ = ad r +R satisfies the co-Jacobi identity, i.e., Jξ, ξK = 0, then the conditionJR,RK = 0 is equivalent to the following system for all i > k0:

ℓ0∑
p=1

h
(2i−1)
pi f

((p))
jk = 0,

ℓ0∑
p=1

h
(2i−1)
pi n

((p))
jj = 0,

(14)

where f
((p))
jk and n

((p))
jj encode the contribution of the central component z.

This condition is automatically satisfied in the following cases:

• When the center is trivial, i.e., z = {0}, any Lie bialgebra structure (g, ad r +R) implies
that (g, R) defines a non-exact Lie bialgebra.

• When k0 = m, meaning the dimension of the derived ideal [g, g] equals twice the dimension
of the abelian subalgebra s, the vanishing of JR,RK is ensured when ξ satifies the co-Jacobi
identity, and (g, R) constitutes a non-exact Lie bialgebra structure.

ω ⟨ω, F (si)⟩ (i = 1, . . . , k0)

s∗j ∧ s∗k ∧ d∗2ℓ−1 λiℓ

(
−ekℓ c

(2ℓ−1)
jℓ + ejℓ c

(2ℓ−1)
kℓ − ckℓ s

∗
j(Φℓ) + cjℓ s

∗
k(Φℓ)

)
s∗j ∧ s∗k ∧ d∗2ℓ λiℓ

(
ckℓ c

(2ℓ−1)
jℓ − cjℓ c

(2ℓ−1)
kℓ − ekℓ s

∗
j(Φℓ) + ejℓ s

∗
k(Φℓ)

)
s∗j ∧ z∗k ∧ d∗2ℓ−1 λiℓ

(
−hkℓ c

(2ℓ−1)
jℓ + ejℓ g

(2ℓ−1)
kℓ − gkℓ s

∗
j(Φℓ) + cjℓ (z

∗
k(Φℓ) + h

(2ℓ−1)
kℓ )

)
s∗j ∧ z∗k ∧ d∗2ℓ λiℓ

(
gkℓ c

(2ℓ−1)
jℓ − cjℓ g

(2ℓ−1)
kℓ − hkℓ s

∗
j(Φℓ) + ejℓ (z

∗
k(Φℓ) + h

(2ℓ−1)
kℓ )

)
z∗j ∧ z∗k ∧ d∗2ℓ−1 −λiℓ

( k0∑
p=1

epℓ f
p
jk +

ℓ0∑
p=1

hpℓ f
((p))
jk + hkℓg

(2ℓ−1)
jℓ − hjℓg

(2ℓ−1)
kℓ

+gkℓ

(
z∗j (Φℓ) + h

(2ℓ−1)
jℓ

)
− gjℓ

(
z∗k(Φℓ) + h

(2ℓ−1)
kℓ

))
z∗j ∧ z∗k ∧ d∗2ℓ λiℓ

( k0∑
p=1

cpℓ f
p
jk +

ℓ0∑
p=1

gpℓ f
((p))
jk + gkℓg

(2ℓ−1)
jℓ − gjℓg

(2ℓ−1)
kℓ

−hkℓ

(
z∗j (Φℓ) + h

(2ℓ−1)
jℓ

)
+ hjℓ

(
z∗k(Φℓ) + h

(2ℓ−1)
kℓ

))
14



ω ⟨ω, F (d2i−1)⟩ (i = 1, . . . ,m)

s∗j ∧ d∗2i−1 ∧ d∗2i −cji

(
k0∑
p=1

λpi c
(2i−1)
pi

)
− s∗j(Φi)d

∗
2i(Φi) + c

(2i−1)
ji d∗2i−1(Φi)

z∗j ∧ d∗2i−1 ∧ d∗2i −gji

(
k0∑
p=1

λpi c
(2i−1)
pi

)
−
(
z∗j (Φi) + h

(2i−1)
ji

)
d∗2i(Φi) + g

(2i−1)
ji d∗2i−1(Φi)

ω ⟨ω, F (d2i)⟩ (i = 1, . . . ,m)

s∗j ∧ d∗2i−1 ∧ d∗2i −eji

(
k0∑
p=1

λpi c
(2i−1)
pi

)
+ s∗j(Φi)d

∗
2i−1(Φi) + c

(2i−1)
ji d∗2i(Φi)

z∗j ∧ d∗2i−1 ∧ d∗2i −hji

(
k0∑
p=1

λpi c
(2i−1)
pi

)
+
(
z∗j (Φi) + h

(2i−1)
ji

)
d∗2i−1(Φi) + g

(2i−1)
ji d∗2i(Φi)

The expressions for F (d2i) are identical to those for F (d2i−1) for all ω not listed in the table
above, up to a sign change.

We will describe here all the possible solutions of the co-Jacobi equation.
We have for all 1 ≤ j < k ≤ ℓ0 and all i = 1 . . . ,m{∑k0

p=1 cpi f
p
jk +

∑ℓ0
p=1 gpi f

((p))
jk = 0∑k0

p=1 epi f
p
jk +

∑ℓ0
p=1 hpi f

((p))
jk = 0

For i > k0 we have either
1.

g
(2i−1)
ji =0 = z∗j (ϕi) + h

(2i−1)
ji , for all j = 1, . . . , ℓ0

s∗j(ϕi) =0, for all j = 1, . . . , k0

d∗2j−1(ϕi)d
∗
2j−1(ϕj) + d∗2j(ϕi)d

∗
2j(ϕj) = 0, for all j = 1, . . . ,m, (j ̸= i)

or
2. d∗2i−1(ϕi) = 0 = d∗2i(ϕi) and

∑k0
p=1 s

∗
p(ϕj) f

p
ik +

∑ℓ0
p=1

(
z∗p(ϕj) + h

(2j−1)
pj

)
f
((p))
ik = 0, for all j = 1, . . . ,m∑k0

p=1 s
∗
p(ϕj)n

p
ii +

∑ℓ0
p=1

(
z∗p(ϕj) + h

(2j−1)
pj

)
n
((p))
ii = 0, for all j = 1, . . . ,m, (j ̸= i)∑ℓ0

p=1 g
(2i−1)
pi f

((p))
jk = 0, for all 1 ≤ j < k ≤ ℓ0∑ℓ0

p=1 g
(2i−1)
pi n

((p))
jj = 0, for all j = 1, . . . ,m

(
−cki cji
−eki eji

)(
s∗j(ϕi)
s∗k(ϕi)

)
=

(
0
0

)
, for all 1 ≤ i < j ≤ k0. (15)

(
eji cji

−cji eji

)(
g
(2i−1)
ki

z∗k(ϕi) + h
(2i−1)
ki

)
= s∗j(ϕi)

(
gki
hki

)
,

for all j = 1, . . . , k0, k = 1, . . . , ℓ0. (16)
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We assume the condition (14) verified and we look for r ∈
∧2 g solution of the Yang-Baxter

equation so that r defines a triangular Lie bialgebra structure compatible with the no exact
one defined by R, i.e. Jad r, RK = 0.

3.3.2. Exact bialgebra structures
If ξ = ad r then, (g, ξ) is a Lie bialgebra precisely when [r, r] is a solution of the Yang-Baxter

equation, that is,

[r, r] ∈

(
3∧
g

)g

. (17)

In particular, any bivector r satisfying [r, r] = 0 is called triangular (a solution to the classical
Yang-Baxter equation).

The bracket we use is the Schouten-Nijenhuis bracket, defined for X,Y ∈
∧2 g and for all

ω ∈
∧3 g∗ by Lichnerowicz’s formula:

⟨ω, [X,Y ]⟩ = −⟨d(iY ω), X⟩ − ⟨d(iXω), Y ⟩+ ⟨dω,X ∧ Y ⟩
= iY ω(µ(X)) + iXω(µ(Y )) + ⟨dω,X ∧ Y ⟩,

where the linear map µ :
∧2 g → g is the Lie bracket of g.

Let g = s ⊕ z ⊕ [g, g] be a nondegenerate flat Lie algebra. A cocycle ξ = ad r + R on g is
exact if and only if R = 0.

Since r0 ∈ (s ∧ [g, g]) ⊕ (z ∧ [g, g]) ⊕
(

⊕
1≤i<j≤m

Pi ∧ Pj

)
and r1 ∈

∧2 s ⊕ s ∧ z, then for

r = r0 + r1, we have
[r, r] = [r0, r0] + 2[r0, r1] = m1 + . . .+m8

corresponding to the direct-sum decomposition into s-modules noted respectively M1, . . . ,M8:(
⊕m

i=1s ∧
2∧
Pi

)
⊕

(
⊕m

i=1z ∧
2∧
Pi

)
⊕
(

⊕
1≤i<j≤m

[g, g] ∧ Pi ∧ Pj

)
⊕
(

⊕
1≤i<j≤m

s ∧ Pi ∧ Pj

)
⊕
(

⊕
1≤i<j≤m

z ∧ Pi ∧ Pj

)
⊕ (s ∧ z ∧ [g, g])⊕

(
2∧
s ∧ [g, g]

)
⊕

(
2∧
z ∧ [g, g]

)
.

If [r, r] is g-invariant then [r, r] = m1 +m2 with m1 ∈ M g
1 , m2 ∈ M g

2 = M2. This follows from
the fact that M g

i = {0} for all i = 3, . . . , 8. This relies on the following lemma:

Lemma 3.4. Let g = s⊕ z⊕
(

m
⊕
j=1

Pi

)
be a nondegenerate flat Lie algebra. Then

1. (Pi ∧ Pj ∧ Pk)
g = {0} for all 1 ≤ i < j < k ≤ m.

2.
(

m
⊕
j=1

s ∧
∧2 Pj

)g

=

{
k0∑
i=1

αi si ∧ d2i−1 ∧ d2i

}
, where αi ̸= 0 only if λij = 0 for all j > k0.
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Proof. 1. Suppose that

m =
(
ai d2i−1 + bi d2i

)
∧
(
aj d2j−1 + bj d2j

)
∧
(
ak d2k−1 + bk d2k

)
is an element of Pi ∧ Pj ∧ Pk. Then the condition

adsp m = 0 for all p = 1, . . . , k0,

holds if and only if

0 −λpk −λpj 0 −λpi 0 0 0
λpk 0 0 −λpj 0 −λpi 0 0
λpj 0 0 −λpk 0 0 −λpi 0
0 λpj λpk 0 0 0 0 −λpi

λpi 0 0 0 0 −λpk −λpj 0
0 λpi 0 0 λpk 0 0 −λpj

0 0 λpi 0 λpj 0 0 −λpk

0 0 0 λpi 0 λpj λpk 0





aiajak
aibjak
aibjbk
bibjbk
biajak
bibjak
biajbk
aiajbk


= 0R8 .

This system can be rewritten in the block form(
A −λpi Id

λpi Id A

)(
X
Y

)
= 0R8 .

So λpi Y = AX and
(
A2 + λ2

pi Id
)
X = 0. Since the eigenvalues of A2 are

−(λpj − λpk)
2 and − (λpj + λpk)

2,

and because g is nondegenerate, there exists some p ∈ {1, . . . , k0} for which −λ2
pi is not

an eigenvalue of A2. This forces X = 0 and hence Y = 0, implying that m = 0.
2. Assume that

m = si ∧ d2j−1 ∧ d2j

is g-invariant. Then necessarily, we must have i = j; otherwise, one obtains add2i m =
d2i−1 ∧ d2j−1 ∧ d2j ̸= 0. Moreover, one computes

add2p−1 m = −λip d2p ∧ d2j−1 ∧ d2j, add2p m = λip d2p−1 ∧ d2j−1 ∧ d2j.

Thus, m is g-invariant if and only if λip = 0 for all p ̸= i, which is equivalent to saying
that λij = 0 for all j > k0.
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ω ⟨ω , [r0, r1]⟩

s∗i ∧ z∗j ∧ d∗2k−1 −

(∑
p<i

λpk(−api) +
∑
i<p

λpkaip

)
hjk

s∗i ∧ z∗j ∧ d∗2k

(∑
p<i

λpk(−api) +
∑
i<p

λpkaip

)
gjk

z∗i ∧ z∗j ∧ d∗2k−1

(
k0∑
p=1

λpkbpi

)
hjk −

(
k0∑
p=1

λpkbpj

)
hik

z∗i ∧ z∗j ∧ d∗2k −

(
k0∑
p=1

λpkbpi

)
gjk +

(
k0∑
p=1

λpkbpj

)
gik

s∗i ∧ d∗2j−1 ∧ d∗2k−1 −

(∑
p<i

λpk(−api) +
∑
i<p

λpkaip

)
njk +

(∑
p<i

λpj(−api) +
∑
i<p

λpjaip

)
nkj

s∗i ∧ d∗2j−1 ∧ d∗2k

(∑
p<i

λpk(−api) +
∑
i<p

λpkaip

)
mjk −

(∑
p<i

λpj(−api) +
∑
i<p

λpjaip

)
pjk

s∗i ∧ d∗2j ∧ d∗2k

(∑
p<i

λpj(−api) +
∑
i<p

λpjaip

)
njk −

(∑
p<i

λpk(−api) +
∑
i<p

λpkaip

)
nkj

z∗i ∧ d∗2j−1 ∧ d∗2k−1

(
k0∑
p=1

λpkbpi

)
njk −

(
k0∑
p=1

λpjbpi

)
nkj

z∗i ∧ d∗2j−1 ∧ d∗2k −

(
k0∑
p=1

λpkbpi

)
mjk +

(
k0∑
p=1

λpjbpi

)
pjk

z∗i ∧ d∗2j ∧ d∗2k −

(
k0∑
p=1

λpjbpi

)
njk +

(
k0∑
p=1

λpkbpi

)
nkj

Theorem 3.5. Let (g = s⊕ z⊕ [g, g], ad r +R) a nondegenerate flat Lie algebra.

1. If g∗ is unimodular and r ∈
(∧2 g

)g then [r, r] = 0. More precisely, r0 and r1 are two
compatible solutions of the classical Yang-Baxter equation.

2. If r1 = 0 then the dual Lie algebra g∗ is not semisimple.

Proof. 1. Recall that a Lie algebra is unimodular if its modular form vanishes identically.
For the dual Lie algebra g∗, this condition can be expressed as follows:

tr(ad∗
si
) = 2c

(2i−1)
ii , tr(ad∗

d2i−1
) = 2d∗2i(Φi), tr(ad∗

d2i
) = −2d∗2i−1(Φi),

and

tr(ad∗
zi
) = 2

m∑
p=1

g
(2p−1)
ip −

∑
p<i

f
(p)
pi +

∑
i<p

f
(p)
ip .

As established earlier, the condition [r, r] ∈
(∧3 g

)g (that is, the Yang-Baxter equation)
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is satisfied if and only if r = r0 + r1 lies in the subspace

m⊕
j=1

(
s ∧

2∧
Pj

)s

⊕
m⊕
j=1

(
z ∧

2∧
Pj

)
,

where r0 and r1 are as described in the main theorem. In particular, this implies that
µ(r) = µ(r0) = 0, where µ denotes the Lie bracket. Moreover, for any 3-form ω in
s∗ ∧

∧2 P ∗
j ⊕ z∗ ∧

∧2 P ∗
j , we have dω = 0, so

⟨[r, r], ω⟩ = 2⟨r ∧ µ(r), ω⟩+ ⟨r ∧ r, dω⟩ = 0.

Similarly, ⟨[r0, r0], ω⟩ = 0, and thus [r, r] = [r0, r0] = 0. Therefore, both r0 and r1 provide
compatible solutions to the classical Yang-Baxter equation.

2. For the second statement, suppose r1 = 0 and assume, for contradiction, that the dual
Lie algebra g∗ is semisimple, thus unimodular. Observe that, for all i = 1, . . . , k0 and
j = 1, . . . ,m, the dual Lie brackets are given by

[s∗i , d
∗
2j−1] = −eij

k0∑
p=1

λpjs
∗
p, [s∗i , d

∗
2j] = cij

k0∑
p=1

λpjs
∗
p.

This demonstrates that s∗ is a nontrivial abelian ideal in g∗, which is a contradiction.
Therefore, g∗ cannot be semisimple if r1 = 0.

4. Examples

4.1. Low dimensional examples
Dimension 3. Let g = span{s, d1, d2} be the flat Lie algebra with the brackets [s, d1] = d2,
[s, d2] = −d1. A 1-cocycle on g is of the form

ξ(s) = a s ∧ d1 + b s ∧ d2 + c d1 ∧ d2
ξ(d1) = e s ∧ d1 + b d1 ∧ d2
ξ(d2) = e s ∧ d2 − a d1 ∧ d2.

The transpose map ξt is a Lie bracket on the dual vector space g∗ if and only if c = 0 or e = 0.
In both cases the dual Lie algebra is solvable.

For any r ∈
∧2 g, [r, r] is ad-invariant and

[r, r] = 0 ⇔ r = c d1 ∧ d2 (c ∈ R),

i.e. the unique solution to the classical Yang-Baxter equation consists of the invariant elements
within

∧2 g which give rise to a trivial cocycle.

19



Dimension 4. Let g = span{s, z, d1, d2} be the flat Lie algebra with the brackets [s, d1] = d2,
[s, d2] = −d1. A 1-cocycle on g is of the form

ξ(z) = n
((1))
11 d1 ∧ d2

ξ(s) = c11 s ∧ d1 + e11 s ∧ d2 + g11 z ∧ d1 + h11 z ∧ d2 + n11 d1 ∧ d2
ξ(d1) = C

(1)
11 s ∧ d1 + g

(1)
11 z d1 + h

(1)
11 z d2 + e11 d1 ∧ d2

ξ(d2) = C
(1)
11 s ∧ d2 − h

(1)
11 z d1 + g

(1)
11 z d2 − c11 d1 ∧ d2.

The transpose map ξt is a Lie bracket on the dual vector space g∗ if and only if
n
((1))
11 = n11 = 0 or c11 = 0

g11c
(1)
11 − c11g

(1)
11 + e11h

(1)
11 = 0

h11c
(1)
11 − e11g

(1)
11 − c11h

(1)
11 = 0.

In these three cases the dual Lie algebra is solvable.
For any r ∈

∧2 g, [r, r] is ad-invariant and

[r, r] = 0 ⇔ r = a s ∧ z + b z ∧ d1 + c z ∧ d2 (a, b, c ∈ R).

5. Flat Poisson-Lie groups

The simply connected Lie group whose Lie algebra is flat is given by G = Rk0 ⋉Rℓ0+2m with
the product (x, y, z) · (X,Y, z) := (x+X, y + Y, z + adx Z), where

adx Z = eadxZ =

J1
. . .

Jm


 Z1

...
Z2m


where each Jℓ is a 2× 2 skew-symmetric matrix.

The spaces of left invariant and right invariant vector fields are given respectively by:

XL(G) =⟨∂x1 , . . . , ∂xk0
⟩ ⊕ ⟨∂y1 , . . . , ∂yℓ0 ⟩ ⊕ ⟨D1, . . . , D2m⟩

XR(G) =⟨E1, . . . , Ek0⟩ ⊕ ⟨∂y1 , . . . , ∂yℓ0 ⟩ ⊕ ⟨∂z1 , . . . , ∂z2m⟩,

where D2ℓ−1 = cos
(∑k0

i=1 λiℓxi

)
∂z2ℓ−1

+ sin
(∑k0

i=1 λiℓxi

)
∂z2ℓ

D2ℓ = − sin
(∑k0

i=1 λiℓxi

)
∂z2ℓ−1

+ cos
(∑k0

i=1 λiℓxi

)
∂z2ℓ

and
Ek = ∂xk

+ λk1(−z2∂z1 + z1∂z2) + . . .+ λkm(−z2m∂z2m−1 + z2m−1∂z2m)

6. Conclusion

Despite the apparent structural simplicity of flat Lie algebras, the comprehensive classifi-
cation of bialgebra structures on these algebras presents significant computational challenges.,
with the degenerate case remaining unexplored. Given that degenerate flat Lie algebras can be
obtained as contractions of their nondegenerate counterparts, this suggests that insights from
this work may extend to the degenerate setting.
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