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Abstract—Large Language Models (LLMs) have demonstrated
remarkable proficiency in generating text and producing fluent,
succinct, and precise linguistic expressions. Limited battery life
and computing power make it challenging to process LLM
inference tasks in mobile devices. Intelligent edge computing
brings the opportunity to help users process LLM inference tasks
in real-time by offloading computations to nearby edge devices.
However, due to the undetermined relationship between various
task requirements and offloading configurations, inefficient of-
floading leads to unaffordable additional energy consumption,
especially for intelligent tasks. This paper first investigates the
energy consumption issue with different offloading configurations
and task requirements in an intelligent edge testbed. According
to the preliminary experiment results, we formulate the LLM
offloading problem as a multi-armed bandit (MAB) problem and
then use an upper confidence bound (UCB) bandit algorithm
to find the energy-efficient offloading configurations. Extensive
simulation results show that our approach enhanced the energy
efficiency for offloading LLM inference tasks with different
requirements in the intelligent edge environment.

Index Terms—Large Language Models (LLMs), Energy Effi-
ciency, Intelligent Edge Computing

I. INTRODUCTION

Large Language Models (LLMs) such as OpenAI’s GPT
series and its derivatives have shown powerful capacity in
various Natural Language Processing (NLP) tasks across
multiple languages [1]. These models consume significant
computational and storage resources for both training and
inference. Therefore, given the constraints of devices and
environmental resources, most LLM applications are typically
hosted on high-end cloud servers [2].

Intelligent edge computing facilitates real-time inference on
local devices by placing computing servers close to the data
source. This strategy significantly reduces data transmission
latency to the cloud and provides better privacy [3]. However,
unlike ordinary edge AI tasks, the LLM inference task requires
more computational resources and storage support. Given
edge devices’ typically limited battery life, minimizing the
energy consumption of task inference is critical to ensure edge
devices’ stable and reliable operation.

Research relevant to edge computing focuses on optimizing
the location of task offloading to improve the energy efficiency

of the task process [4], [5]. Usually, these methods focus on
selecting only one configuration for task offloading, such as
a different offloading device. For the LLM inference task, the
energy consumption of the inference is affected by various
factors, such as the number of parameters for LLM, the length
of the input text, and so on. Therefore, optimizing the selection
of multiple offload configurations will be a better option to
improve energy efficiency. On the other hand, meeting the
task requirement of the LLM inference task is also essential.
In contrast, task requirements can be inference accuracy,
inference time, or a combination. Notably, task requirements
from the user’s perspective are intricately intertwined with
energy consumption requirements from the server’s perspec-
tive. For example, using a low-power device or an LLM with
fewer parameters may reduce energy consumption. Still, it
will increase the inference time of the task or achieve low
accuracy. So, it is challenging to meet the task requirements
of each user while optimizing the selection of multiple offload
configurations.

We are conducting preliminary experiments within an edge
computing testbed to address this issue and identify offloading
configurations critical for task requirements and energy con-
sumption. Modifying these configurations allows us to observe
the corresponding shifts in energy consumption and task
requirements. The experimental results, detailed in Section III,
show that a suitable selection of configurations can signifi-
cantly improve energy efficiency and ensure task requirements.
Nevertheless, the automatic assignment of suitable configura-
tions for offloading LLM inference tasks in edge environments
is a complex challenge. Unlike general computing tasks at
the edge, LLM inference tasks have multiple configurations,
and the combination of these configurations has unpredictable
effects on energy consumption and task requirements, making
configuration selection more complex.

This paper presents a new approach to make energy use
more efficient when offloading large language model (LLM)
inference tasks to the edge environment. Our method starts
by modeling this challenge as a multi-armed bandit (MAB)
problem. This helps us to understand how different config-
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urations affect the energy consumption of Intelligence edge
computing when processing LLM tasks. To solve this MAB
problem, we use the Upper Confidence Bound (UCB) algo-
rithm. In asymptotic settings, UCB is shown to achieve close
to optimal regret limits, making it attractive for multiarm and
large-horizon scenarios. We’ll show how effective this is in
Section V. The main contributions of this paper are as follows:

1) Firstly, we perform preliminary experiments, and the
experimental results show the impact of different configu-
rations on the task requirements and energy consumption
of the LLM inference task in an edge computing envi-
ronment.

2) Next, we define an MAB issue to determine the best
configurations for offloading LLM tasks in an intelligent
edge environment. We use the UCB algorithm to solve
the MAB problem, effectively determining the best con-
figurations while considering different task requirements.

3) Finally, we compare the UCB algorithm with two stan-
dard algorithms. Numerous simulations have shown the
superior performance of the UCB algorithm over other
algorithms, highlighting its advantage in our energy effi-
ciency problem.

The rest of this paper is organized as follows. We discuss
the related work on LLM and intelligent edge computing in
Section II. Section III presents the pre-experimental setting and
shows experimental results. The MAB problem formulation is
described in Section IV. Performance evaluation is discussed
in Section V. Finally, we conclude this paper in Section VI.

II. RELATED WORK

Edge computing has been an essential area of research in
computer networking for over a decade. More recently, there
has been an increasing focus on energy-efficient computing,
particularly on edge environments. In this section, we review
some related work that explores these aspects.

In addressing the complexities of energy optimization in
edge computing, recent literature presents a multi-faceted
approach to improving efficiency within the Internet of Things
(IoT) and Cyber-Physical Systems (CPS). Na Su et al. [6] ad-
dress underutilized computing resources in wired edge devices
within the Industrial Internet of Things (IIoT), proposing com-
putational task assignment and resource allocation algorithms
to balance energy consumption with latency requirements.
Their methodology paves the way for improved computa-
tional performance in delay-sensitive networks. Focusing on
the burgeoning needs of 5G and emerging 6G networks,
Abegaz Mohammed Seid et al. [7] present a deep federated
learning-based framework for airborne mobile edge computing
(MEC) servers in smart city CPS. Their hierarchical model
significantly improves the management of ultra-low latency
applications, addressing the expected congestion of terrestrial
MEC servers. In the context of smart buildings, Muhammad
Ibrar et al. [8] developed REED, a model that integrates
software-defined networking, edge computing, and device-to-
device (D2D) communication. This model aims to minimise
energy consumption and latency, using deep deterministic

policy gradient algorithms to effectively manage the high
density of IoT devices.

In recent years, with the rapid development of artificial
intelligence, more and more AI tasks are being deployed on
edge devices. First, Sha Zhu et al. [9] investigate the energy
requirements of AI-driven applications within the IIoT and
propose an intelligent edge computing framework with a novel
scheduling algorithm. Their approach demonstrates a signifi-
cant reduction in energy consumption compared to traditional
methods. Next, Galanopoulos et al. [10] address video analyt-
ics in wireless services, a domain that requires extensive data
processing. They propose an Automated Machine Learning
(AutoML) framework for dynamically configuring service and
network parameters to improve the accuracy of the analysis
while maintaining frame rate constraints. Their Bayesian on-
line learning algorithm demonstrates adaptability and effec-
tiveness, optimizing real-time configurations. Yuan et al. [11]
address the challenge of semantic segmentation in computer
vision, which is hampered by user devices’ limited computing
power and battery life. They present an approach to improve
energy efficiency by offloading computations to neighboring
devices, formulating this as a constrained multi-armed bandit
problem. Their improved upper confidence bound algorithm
significantly increases the energy efficiency of offloading these
intensive tasks in edge environments. Finally, in healthcare,
S. Abirami et al. [12] explore the potential of wearable
IoT (wIoT) devices in remote health monitoring systems for
diabetic patients with cardiovascular disease. They proposed
a health support system named EESE-HSS to improve energy
efficiency in the smart cloud edge paradigm. This system
focuses on rapid emergency diagnosis with an energy-efficient
edge intelligence framework, highlighting the importance of
reduced latency and improved energy efficiency in critical
healthcare applications.

Overall, these works significantly contribute to the energy-
efficient edge computing field. However, we did not find any
relevant research on the energy efficiency of large language
models in edge computing, and our work fills this gap.

III. PRELIMINARY EXPERIMENT

In this section, we present the details of our preliminary
experiments.

Given the high computational demands of large language
model inference tasks, we selected the NVIDIA Jetson AGX
Orin and NVIDIA Jetson AGX Xavier for our experiments.
These platforms are renowned for their high-performance
capabilities, particularly in AI and robotics applications. In the
edge environment, we run text-generation-webui in Docker.
The text-generation-webui is a radio-based interface for run-
ning large language models such as LLaMA, GPT-J, and OPT.
For the Large Language Model, we choose five models trained
by Meta, LLaMA-7B, LLaMA-13B, LLaMA-33B, LLaMA-
2-7B, and LLaMA-2-13B [13], which is deployed to two
devices. We are using GPTQ-for-LLaMa as a model loader.

To ensure maximum device performance, we activated the
Jetson clocks and monitored the power consumption of each
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(a) AGI Value (b) Inference Speed (c) Energy Consumption

Fig. 1. AGI Value, Inference Speed, and Energy Consumption for Different Configuration

device in real time using the Jetson Power GUI. Before starting
the experiment, we defined the accuracy of the inference task.
We use the AGI Eval [14] provided by Meta to evaluate the
model’s accuracy. The AGI Eval is a widely acknowledged
benchmark, renowned for its comprehensive evaluation of
underlying models in the context of human-centered, standard-
ized assessments such as advanced placement tests., medical
licensing examinations, mathematics competitions, and bar
exams. The AGI value, as depicted in Fig. 1a, represents the
quantitative score derived from the AGI Eval tool. This score
quantifies the model’s effectiveness and its capability to mimic
human-like reasoning and decision-making across the afore-
mentioned standardized tests. A higher AGI value indicates
superior performance, suggesting that the model demonstrates
a closer approximation to human-level competencies in the
evaluated domains.

On the other hand, the inference speed is also a critical
evaluation standard, so we evaluated the inference speed of the
five models on the device, and the results are shown in Fig. 1b.
The fastest inference configuration was LLaMA-7b on Jetson
AGX Orin at 9.14 tokens per second, and the slowest inference
configuration was LLaMA-33b on Jetson AGX Xavier at 2.09
tokens per second Combining with the AGI Eval value, we can
observe that LLaMA-7B and LLaMA-2-7B produce similar
speeds when performing inference, but LLaMA-2-7B has a
higher AGI Eval value. The same is true for LLaMA-13B and
LLaMA-2-13B. As for LLaMA-33B, it has the highest AGI
Eval value but has a slow inference speed.

Finally, we evaluated the energy consumption of the five
models for inference on two edge devices. Fig. 1c shows the
energy consumption required to generate one token for differ-
ent configuration values. We can see running the LLaMA-
33B model on the Jetson AGX Orin platform results in
energy consumption of approximately 9.73 joules per token
generated. In contrast, operating the LLaMA-7B model on the
same platform incurs a significantly lower energy expenditure,
estimated at 1.93 joules per token. This indicates that the
energy consumption associated with the LLaMA-33B on the
Jetson AGX Orin is nearly 5x greater than that of the LLaMA-
7B for analogous tasks, disregarding specific accuracy and
inference speed requirements. However, our analysis revealed
a noteworthy finding when task requirements were factored in.
For instances where the accuracy threshold exceeds 33.9, and
the desired inference speed surpasses 3.6 tokens per second,

the most energy-efficient configuration does not involve the
LLaMA-7B model on the AGX Xavier platform, as might
be expected. Instead, the LLaMA-7B model operating on the
Jetson AGX Orin emerges as the optimal choice regarding
energy efficiency.

The experimental results show that the different configura-
tions have a complex impact on task energy consumption and
task requirements when inference tasks of the large language
models on edge devices. The relationships between these
configurations show unpredictable correlations. This makes
determining the optimum configuration value challenging be-
fore processing the task.

IV. SYSTEM MODEL

This section provides a comprehensive overview of our
system framework and explains the modeling of the system’s
energy consumption.

A. System model

We proposed a system that uses intelligence edge computing
to make generative inference tasks more energy-efficient,
as shown in Fig. 2. In our setup, users upload tasks to
the edge server and choose the lowest acceptable inference
speed and AGI value. We denote the number of tasks as
n = 1, 2, . . . , N and denote minimum acceptable inference
speed as δn, minimum acceptable AGI value as λn. The
accuracy and inference speed represent two pre-defined sets
of reference values we offer. These benchmarks are obtained
from experiments conducted on various devices and models.

Our system runs in discrete rounds, denoted t, where t =
1, 2, . . . , T , each round being assigned a specific configuration
value. As highlighted in Section III, two critical configu-
rations (edge device and the number of model parameters)
significantly affect a task’s energy consumption, inference
speed, and accuracy. However, the interplay between these
configurations is complex and not easily predictable. Our
goal is to minimize the energy consumption of tasks while
satisfying the task’s inference speed and accuracy constraints
of the task by choosing the suitable configuration value.

Therefore, we select the type of edge device from a finite
set D and choose the number of model parameters from a
finite set P . So we define the configuration value on round t
as:

zt = (dt, pt) ∈ Z ≡ D × P . (1)

The 20th International Wireless Communications & Mobile Computing Conference

0246
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 21,2025 at 08:36:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. System Framework

B. System Energy Consumption

In edge servers, the primary source of energy consump-
tion is the generative inference of tasks. After selecting the
configuration value of the task, the edge servers adjust this
configuration and start the generative inference. When a task
is completed, the generated text is sent back to the user
via a wireless network. The edge server records the energy
consumed during the generative inference process. To repre-
sent the inference energy consumption, we use the notation
pinft (zt), where zt denotes the configuration value chosen for
round t. We then aggregate the energy consumption in each
round to formulate a measure of the total energy consumption
by the system during the generative inference phase:

pcomtotal =
T∑

t=1

pcomt (zt). (2)

In our system, the energy consumption for data transmission
is calculated as the product of the transmission power and
the transmission time. We denote the transmission time in
round t as lt. Transmission time depends on the size of the
data to be transmitted, represented as dt, and the transmission
rate, Rtran. The formula for calculating the transmission time
is, therefore, lt = dt/R

tran. The transmission rate, Rtran,
is derived based on the principles of the Shannon-Hartley
theorem, formulated as Rtran = B log2(1 + Stran/N tran),
where B is the channel bandwidth, Stran is the average
power of the received signal, and N tran is the power of the
transmitted noise. So, the total energy consumption by the
system during the transmission phase is:

ptrantotal =

T∑
t=1

ptrant , (3)

where ptrant = otranlt, and otran is the transmit power when
transmitting tasks.

In summary, we can define the energy consumption of the
system by adding the energy consumption of generative infer-
ence and the energy consumption of transmission together:

P = ptrantotal + pinftotal. (4)

C. Problem Formulation and Solution

Inference speed and accuracy are two critical metrics for
evaluating our system’s performance of LLM inference tasks.
We denoted the inference speed when configuration value zt is
applied to task n by Sn (zt). And denoted the accuracy when
configuration value zt is applied to task n by An (zt).

Sn (zt)− δn > 0

An (zt)− λn > 0.
(5)

Our goal is to maximize P−1 while maintaining task require-
ments.

Maximize P−1

subject Sn (zt)− δn > 0
An (zt)− λn > 0
P ̸= 0.

(6)

The UCB algorithm is a popular solution to the MAB
problem. Unlike approaches that rely on random selection
for exploration, the UCB algorithm dynamically adjusts its
exploration-exploitation balance based on evolving observa-
tion for the operational environment. This adaptive mechanism
allows the algorithm to progressively explore and refine con-
figuration values expected to yield the highest returns.

In UCB algorithm, the configuration value z chosen at time
step t, is given by:

zt = argmax
z∈Z

[
Vt(z) + c

√
log t/Nt(z)

]
, (7)

where Vt(z) denotes the estimated value of the configuration
z at round t. The term c represents the confidence level,
calibrating the algorithm’s degree of exploration. Additionally,
Nt(z) signifies the count of instances where the configuration
value z has been selected before round t.

V. PERFORMANCE EVALUATION

For our simulation framework, we set the average signal-to-
noise ratio (SNR) per user to 50 dB and the channel bandwidth
to B = 30 MHz. In addition, we adopt the IEEE 802.11ac
standard for the wireless channel model. Then, as comparison
algorithms, we choose the Thompson Sampling algorithm and
the Epsilon Greedy algorithms, two other commonly used
algorithms for the MAB problem.
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Fig. 3. Comparison of Energy Consumption and Latency

Algorithm 1 UCB for LLM Inference Task Offloading
1: Initialization:
2: Initialize δn, λn, V = 0, c = 1.
3: Input:
4: Configuration set Z,
5: Confidence value c,
6: Inference speed threshold δn,
7: Accuracy threshold λn,
8: for t = 1, . . . do
9: zt = argmax

z⊆Z

[
Vt(z) + c

√
log t/Nt(z)

]
10: get round reward zt
11: get round inference speed value Sn (zt)
12: get round accuracy value An (zt)
13: total reward V ← V + zt
14: if Sn (zt)− δn < 0 or An (zt)− λn < 0 then
15: go back to step 6 to reselect zt
16: end if
17: end for

First, we set the accuracy requirement as λn > 20 and
the inference speed requirement as δn > 2, and we evalu-
ate the total energy consumption of the three algorithms in
7,000 iterations. The comparative results in terms of total
energy consumption are shown in Fig. 3a. It can be seen
that Thompson Sampling has a higher energy consumption
compared to the other algorithms. From 0 to 1,000 iterations,
the performance of the Epsilon Greedy and UCB algorithms
are similar, averaging around 16,000 joules. However, as the
number of iterations increases (from 1,000 to 7,000), the
superiority of the UCB algorithm becomes clearer. By the
7,000th iteration, the total energy consumption of the Epsilon
Greedy algorithm reaches about 110,400 Joule, while the UCB
algorithm remains at a lower level of about 99,200 Joule. This
trend indicates that the UCB algorithm is more effective than
the Epsilon Greedy algorithm in optimising energy efficiency
in MAB problems.

Then, we evaluate the average energy consumption of three
algorithms in 10,000 iterations. The results are shown in Fig.
3b. The average energy consumption of all three algorithms
decreases as the number of iterations increases, but the UCB

algorithm is the first to converge. We note that the UCB algo-
rithm converges after 1,000 iterations. After 10,000 iterations,
the average energy consumption of the UCB algorithm is 14.2
joules, compared to 14.5 joules and 14.7 joules for the Epsilon
Greedy and Thompson Sampling algorithms, respectively. Fig.
3c shows the average task latency of three algorithms, and we
can see that the UCB algorithm can always maintain the lowest
average latency.

Considering the tasks have different requirements, we added
three sets with different requirements for comparison. We
define the original requirement as [0.5, 0.5], which means that
half of the tasks are accuracy sensitive (λn > 40), and the
other half of the users are inference speed sensitive (δn > 9)).
In addition, we chose two unique combinations of requirement
[0.1, 0.9] and [0.9, 0.1], The former implies that 90% of the
tasks are sensitive to accuracy and only 10% are sensitive
to inference speed. The latter implies that 90% of the tasks
are inference speed sensitive and 10% are accuracy sensitive.
The simulation results are shown in Fig. 4a. We observe
that in scenarios where more tasks are accuracy-sensitive,
when the number of tasks reaches 10,000, the total energy
consumption of the system is approximately 202,000 joules.
This observation suggests that the algorithm, in its pursuit to
satisfy stringent accuracy criteria, tends to prefer models with
an extensive parameter count, exemplified by the selection of
models like LLaMA-33B. Conversely, in situations with more
emphasis on the speed of inference, when the number of tasks
reaches 10,000, the total energy consumption of the system is
approximately 142,000 joules. This means that the algorithm
tends to select models characterized by fast inference capa-
bilities, and these models typically have a reduced parameter
count, leading to lower energy consumption. A prime example
of such a model is LLaMA-7B, which aligns well with the
requisites of inference speed-sensitive tasks.

Finally, we focus on comparing the performance of the
three algorithms in two different contexts: inference speed-
sensitive and accuracy-sensitive scenarios. Fig. 4b illustrates
the operation of these algorithms under accuracy-sensitive
constraints, while Fig. 4c demonstrates their functionality
under inference-speed-sensitive constraints. During the initial
stages of iterations, the Epsilon Greedy algorithm performs
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(c) Inference Speed Focus

Fig. 4. Algorithm Performance Analysis

comparable to that of the UCB algorithm. However, there
is a clear divergence as the number of iterations increases.
The UCB algorithm consistently maintains its optimal perfor-
mance, demonstrating a more robust and reliable effectiveness
over longer iteration sequences, in contrast to the initially
competitive but ultimately less consistent performance of the
Epsilon Greedy algorithm.

The experiments conducted clearly illustrate the superiority
of the UCB algorithm in the context of selecting optimal con-
figuration values for offloading LLM inference tasks. Notably,
the UCB algorithm consistently identifies the most suitable
configuration value more rapidly than its counterparts, demon-
strating an unerring capacity for making accurate decisions.
Furthermore, this algorithm exhibits remarkable robustness, as
evidenced by its swift convergence across a trio of distinct task
requirements.

VI. CONCLUSION AND FUTURE WORK

This paper deals with the energy efficiency of the LLM
inference task in an edge computing environment. We propose
a problem concerning the total energy consumption and task
requirement and formulate it as an MAB problem. We address
this MAB problem using UCB algorithm. The simulation
experiments show that the UCB algorithm can effectively
minimize energy consumption and has clear advantages over
other algorithms. In future work, we will consider deploying
a multimodal large language model in edge environments and
observe the configurations that affect the power consumption
when reasoning with different modal data.
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