Universidad de los Andes Facultad de Arquitectura y Diseño Dep. Tecnología de la Construcción Construcción 40

# Calculo de Ventilacion

Nombres: Victor Gomez CI. 27.318.438 Yherfretson Marquez CI. 27.632.347 Darlene Rivas CI. 28.163.481

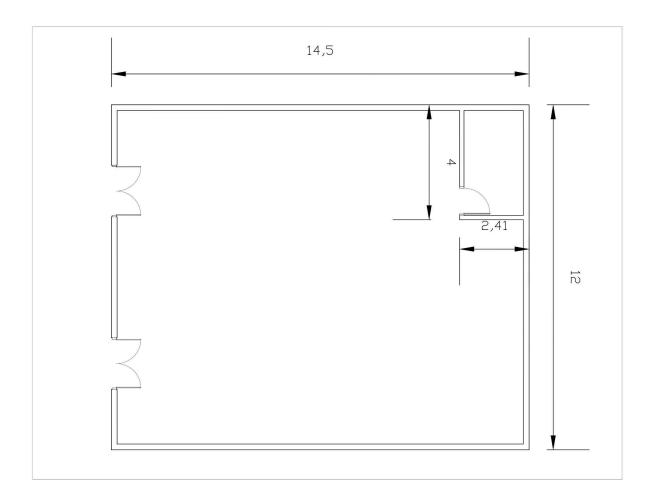
#### Introducción

En el diseño arquitectónico y la construcción de espacios comerciales, la ventilación mecánica juega un papel fundamental en la calidad del ambiente interior, garantizando confort, seguridad y salubridad para los usuarios. En este trabajo, se desarrolla el diseño e instalación de un sistema de ventilación mecánica para un salón de belleza ubicado en un local aislado, contemplando dos sistemas principales: inyección y extracción de aire.

El sistema de inyección tiene como objetivo suministrar aire fresco y filtrado al interior del espacio, asegurando una renovación constante que optimiza las condiciones térmicas y de calidad del aire. Por otro lado, el sistema de extracción se encarga de eliminar contaminantes, olores y exceso de humedad generados por las actividades propias del salón, contribuyendo a un ambiente más saludable para clientes y trabajadores.

Este estudio abordará la selección de equipos, la distribución de ductos, los cálculos necesarios para garantizar un desempeño eficiente y el cumplimiento de las normativas vigentes. De esta manera, se busca desarrollar una solución efectiva y funcional que optimice la operatividad del establecimiento y brinde bienestar a sus ocupantes.

#### Características del ejercicio


Local aislado de centro comercial

• Uso del local: Salon de Belleza

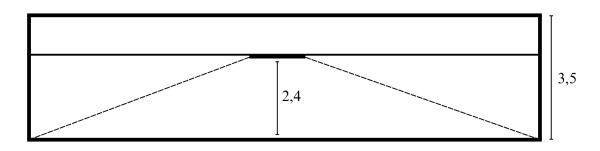
• Dimensiones del local: 14,5 m de profundo y 12 m de ancho

Altura del entrepiso: 3,5 metros.Altura libre a ventilar: 2,4 metros.

• Área a ventilar: 417,6 m<sup>3</sup>



#### Objetivo del general del proyecto


Diseñar e implementar un sistema de ventilación mecánica eficiente para un salón de belleza ubicado en un local aislado, mediante la integración de sistemas de inyección y extracción de aire, con el fin de garantizar la renovación adecuada del aire, mejorar la calidad ambiental interior y cumplir con las normativas vigentes en confort térmico y salubridad.

#### Normativa aplicar

Gaceta Oficial Nº 4.044 Extraordinario del 8 de septiembre de 1988. Normas sanitarias para proyecto, construcción, reparación, reforma y mantenimiento de edificaciones

### Criterios de diseño del ejercicio

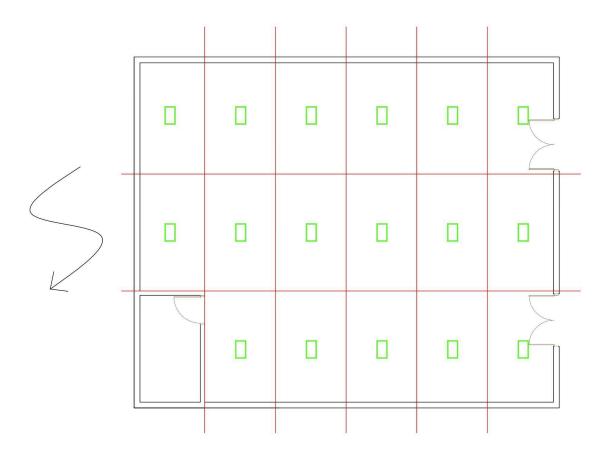
- Tipo de Ventilacion: Extraccion y Inyeccion
- 15 Cambios de aire por hora mínimo
- 0,28 m³ por persona (Área a suplir)
- Caudal del aire a movilizar: 25,6 m³/min



Rejilla

• Área de la rejilla (Ar) = L\*L: 0,16 m<sup>2</sup> L= HL/6 = 2, 4/6 = 0, 4MAr= 0,  $4m \times 0$ ,  $4m \Rightarrow Ar = 0$ , 16 m<sup>2</sup>

• Velocidad de la rejilla (Vr): 38,5 m/min Vr = 35m/min +  $10\% \Rightarrow 38,5$  m/min


• Área total de la rejilla (ATR): 2,71 m<sup>2</sup> ATR=  $\underline{Ov} \Rightarrow \underline{104,4 \text{ m}^3/\text{min}} \Rightarrow \text{ATR}=2,71 \text{ m}^2$ Vr  $38.5 \text{ m}^3/\text{min}$ 

• Número de Rejillas:

 $\underline{ATR} \Rightarrow \underline{2,71\,\text{m}^2} \Rightarrow \# \text{ Rejillas} = 16,94 (17) \text{ rejillas de inyección. para las de extracción se toman 16 rejillas por efectos de cálculo.}$ 

-Inyección: 17 -Extracción: 16

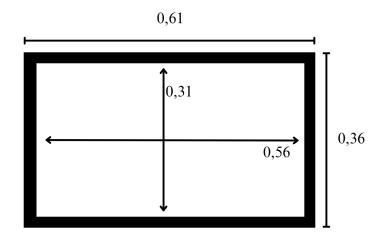
# Ubicación de la Rejilla Inyección



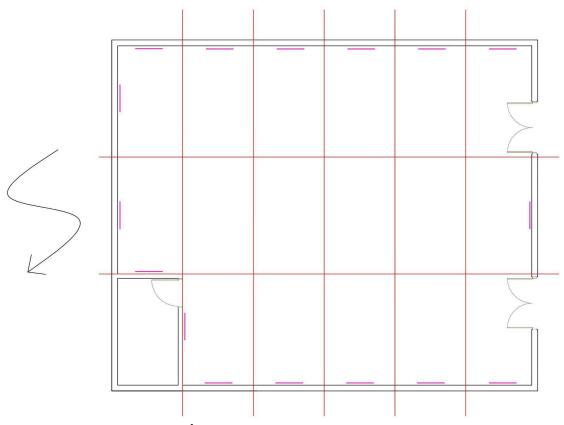
## Área más Próxima Inyección

|   | AREA DE REJILLA EN MEDIDA COMERCIAL |    |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|---|-------------------------------------|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|   | m                                   | •  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| m | m2                                  |    | 0,051  | 0,102  | 0,152  | 0,203  | 0,254  | 0,305  | 0,356  | 0,406  | 0,457  | 0,508  | 0,559  | 0,610  | 0,660  | 0,711  | 0,762  | 0,813  | 0,864  |
|   |                                     |    | 2      | 4      | 6      | 8      | 10     | 12     | 14     | 16     | 18     | 20     | 22     | 24     | 26     | 28     | 30     | 32     | 34     |
|   | 0,051                               | 2  | 0,0026 | 0,0052 | 0,0077 | 0,0103 | 0,0129 | 0,0155 | 0,0181 | 0,0206 | 0,0232 | 0,0258 | 0,0284 | 0,0310 | 0,0335 | 0,0361 | 0,0387 | 0,0413 | 0,0439 |
|   | 0,102                               | 4  | 0,0052 | 0,0103 | 0,0155 | 0,0206 | 0,0258 | 0,0310 | 0,0361 | 0,0413 | 0,0465 | 0,0516 | 0,0568 | 0,0619 | 0,0671 | 0,0723 | 0,0774 | 0,0826 | 0,0877 |
|   | 0,152                               | 6  | 0,0077 | 0,0155 | 0,0232 | 0,0310 | 0,0387 | 0,0465 | 0,0542 | 0,0619 | 0,0697 | 0,0774 | 0,0852 | 0,0929 | 0,1006 | 0,1084 | 0,1161 | 0,1239 | 0,1316 |
|   | 0,203                               | 8  | 0,0103 | 0,0206 | 0,0310 | 0,0413 | 0,0516 | 0,0619 | 0,0723 | 0,0826 | 0,0929 | 0,1032 | 0,1135 | 0,1239 | 0,1342 | 0,1445 | 0,1548 | 0,1652 | 0,1755 |
|   | 0,254                               | 10 | 0,0129 | 0,0258 | 0,0387 | 0,0516 | 0,0645 | 0,0774 | 0,0903 | 0,1032 | 0,1161 | 0,1290 | 0,1419 | 0,1548 | 0,1677 | 0,1806 | 0,1935 | 0,2065 | 0,2194 |
|   | 0,305                               | 12 | 0,0155 | 0,0310 | 0,0465 | 0,0619 | 0,0774 | 0,0929 | 0,1084 | 0,1239 | 0,1394 | 0,1548 | 0,1703 | 0,1858 | 0,2013 | 0,2168 | 0,2323 | 0,2477 | 0,2632 |
|   | 0,356                               | 14 | 0,0181 | 0,0361 | 0,0542 | 0,0723 | 0,0903 | 0,1084 | 0,1265 | 0,1445 | 0,1626 | 0,1806 | 0,1987 | 0,2168 | 0,2348 | 0,2529 | 0,2710 | 0,2890 | 0,3071 |
|   | 0,406                               | 16 | 0,0206 | 0,0413 | 0,0619 | 0,0826 | 0,1032 | 0,1239 | 0,1445 | 0,1652 | 0,1858 | 0,2065 | 0,2271 | 0,2477 | 0,2684 | 0,2890 | 0,3097 | 0,3303 | 0,3510 |
|   | 0,457                               | 18 | 0,0232 | 0,0465 | 0,0697 | 0,0929 | 0,1161 | 0,1394 | 0,1626 | 0,1858 | 0,2090 | 0,2323 | 0,2555 | 0,2787 | 0,3019 | 0,3252 | 0,3484 | 0,3716 | 0,3948 |
|   | 0,508                               | 20 | 0,0258 | 0,0516 | 0,0774 | 0,1032 | 0,1290 | 0,1548 | 0,1806 | 0,2065 | 0,2323 | 0,2581 | 0,2839 | 0,3097 | 0,3355 | 0,3613 | 0,3871 | 0,4129 | 0,4387 |
|   | 0,559                               | 22 | 0,0284 | 0,0568 | 0,0852 | 0,1135 | 0,1419 | 0,1703 | 0,1987 | 0,2271 | 0,2555 | 0,2839 | 0,3123 | 0,3406 | 0,3690 | 0,3974 | 0,4258 | 0,4542 | 0,4826 |
|   | 0,610                               | 24 | 0,0310 | 0,0619 | 0,0929 | 0,1239 | 0,1548 | 0,1858 | 0,2168 | 0,2477 | 0,2787 | 0,3097 | 0,3406 | 0,3716 | 0,4026 | 0,4335 | 0,4645 | 0,4955 | 0,5265 |
|   | 0,660                               | 26 | 0,0335 | 0,0671 | 0,1006 | 0,1342 | 0,1677 | 0,2013 | 0,2348 | 0,2684 | 0,3019 | 0,3355 | 0,3690 | 0,4026 | 0,4361 | 0,4697 | 0,5032 | 0,5368 | 0,5703 |
|   | 0,711                               | 28 | 0,0361 | 0,0723 | 0,1084 | 0,1445 | 0,1806 | 0,2168 | 0,2529 | 0,2890 | 0,3252 | 0,3613 | 0,3974 | 0,4335 | 0,4697 | 0,5058 | 0,5419 | 0,5781 | 0,6142 |
|   | 0,762                               | 30 | 0,0387 | 0,0774 | 0,1161 | 0,1548 | 0,1935 | 0,2323 | 0,2710 | 0,3097 | 0,3484 | 0,3871 | 0,4258 | 0,4645 | 0,5032 | 0,5419 | 0,5806 | 0,6194 | 0,6581 |
|   | 0,813                               | 32 | 0,0413 | 0,0826 | 0,1239 | 0,1652 | 0,2065 | 0,2477 | 0,2890 | 0,3303 | 0,3716 | 0,4129 | 0,4542 | 0,4955 | 0,5368 | 0,5781 | 0,6194 | 0,6606 | 0,7019 |
|   | 0,864                               | 34 | 0,0439 | 0,0877 | 0,1316 | 0,1755 | 0,2194 | 0,2632 | 0,3071 | 0,3510 | 0,3948 | 0,4387 | 0,4826 | 0,5265 | 0,5703 | 0,6142 | 0,6581 | 0,7019 | 0,7458 |

Area proxima: 0,1703 m<sup>2</sup>


### Verificación:

$$ATRv = 17 \times 0,1703 \text{ m}^2 = 2,8951 \text{ m}^2$$


$$Vr = \underline{Qv} \Rightarrow \underline{104,40 \text{ m}^3/\text{min}} \Rightarrow 36,06 \text{ m/min}$$

$$ATRv \qquad 2,8951 \text{ m}^2$$

### Rejilla comercial para Inyección:



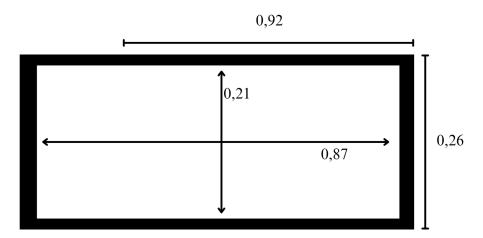
### Ubicación de rejillas de extracción



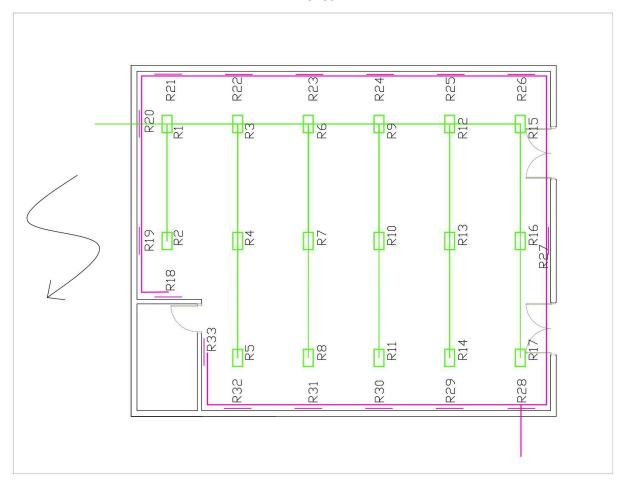
Área más Próxima Extracción

|   |       |    |        |        |        |        |        | AREA D | E REJIL | LA EN M | IEDIDA ( | COMERC | CIAL   |        |        |        |        |        |        |
|---|-------|----|--------|--------|--------|--------|--------|--------|---------|---------|----------|--------|--------|--------|--------|--------|--------|--------|--------|
|   | m     |    |        |        |        |        |        |        |         |         |          |        |        |        |        |        |        |        |        |
| m | m2    |    | 0,051  | 0,102  | 0,152  | 0,203  | 0,254  | 0,305  | 0,356   | 0,406   | 0,457    | 0,508  | 0,559  | 0,610  | 0,660  | 0,711  | 0,762  | 0,813  | 0,864  |
|   |       |    | 2      | 4      | 6      | 8      | 10     | 12     | 14      | 16      | 18       | 20     | 22     | 24     | 26     | 28     | 30     | 32     | 34     |
|   | 0,051 | 2  | 0,0026 | 0,0052 | 0,0077 | 0,0103 | 0,0129 | 0,0155 | 0,0181  | 0,0206  | 0,0232   | 0,0258 | 0,0284 | 0,0310 | 0,0335 | 0,0361 | 0,0387 | 0,0413 | 0,0439 |
|   | 0,102 | 4  | 0,0052 | 0,0103 | 0,0155 | 0,0206 | 0,0258 | 0,0310 | 0,0361  | 0,0413  | 0,0465   | 0,0516 | 0,0568 | 0,0619 | 0,0671 | 0,0723 | 0,0774 | 0,0826 | 0,0877 |
|   | 0,152 | 6  | 0,0077 | 0,0155 | 0,0232 | 0,0310 | 0,0387 | 0,0465 | 0,0542  | 0,0619  | 0,0697   | 0,0774 | 0,0852 | 0,0929 | 0,1006 | 0,1084 | 0,1161 | 0,1239 | 0,1316 |
|   | 0,203 | 8  | 0,0103 | 0,0206 | 0,0310 | 0,0413 | 0,0516 | 0,0619 | 0,0723  | 0,0826  | 0,0929   | 0,1032 | 0,1135 | 0,1239 | 0,1342 | 0,1445 | 0,1548 | 0,1652 | 0,1755 |
|   | 0,254 | 10 | 0,0129 | 0,0258 | 0,0387 | 0,0516 | 0,0645 | 0,0774 | 0,0903  | 0,1032  | 0,1161   | 0,1290 | 0,1419 | 0,1548 | 0,1677 | 0,1806 | 0,1935 | 0,2065 | 0,2194 |
|   | 0,305 | 12 | 0,0155 | 0,0310 | 0,0465 | 0,0619 | 0,0774 | 0,0929 | 0,1084  | 0,1239  | 0,1394   | 0,1548 | 0,1703 | 0,1858 | 0,2013 | 0,2168 | 0,2323 | 0,2477 | 0,2632 |
|   | 0,356 | 14 | 0,0181 | 0,0361 | 0,0542 | 0,0723 | 0,0903 | 0,1084 | 0,1265  | 0,1445  | 0,1626   | 0,1806 | 0,1987 | 0,2168 | 0,2348 | 0,2529 | 0,2710 | 0,2890 | 0,3071 |
|   | 0,406 | 16 | 0,0206 | 0,0413 | 0,0619 | 0,0826 | 0,1032 | 0,1239 | 0,1445  | 0,1652  | 0,1858   | 0,2065 | 0,2271 | 0,2477 | 0,2684 | 0,2890 | 0,3097 | 0,3303 | 0,3510 |
|   | 0,457 | 18 | 0,0232 | 0,0465 | 0,0697 | 0,0929 | 0,1161 | 0,1394 | 0,1626  | 0,1858  | 0,2090   | 0,2323 | 0,2555 | 0,2787 | 0,3019 | 0,3252 | 0,3484 | 0,3716 | 0,3948 |
|   | 0,508 | 20 | 0,0258 | 0,0516 | 0,0774 | 0,1032 | 0,1290 | 0,1548 | 0,1806  | 0,2065  | 0,2323   | 0,2581 | 0,2839 | 0,3097 | 0,3355 | 0,3613 | 0,3871 | 0,4129 | 0,4387 |
|   | 0,559 | 22 | 0,0284 | 0,0568 | 0,0852 | 0,1135 | 0,1419 | 0,1703 | 0,1987  | 0,2271  | 0,2555   | 0,2839 | 0,3123 | 0,3406 | 0,3690 | 0,3974 | 0,4258 | 0,4542 | 0,4826 |
|   | 0,610 | 24 | 0,0310 | 0,0619 | 0,0929 | 0,1239 | 0,1548 | 0,1858 | 0,2168  | 0,2477  | 0,2787   | 0,3097 | 0,3406 | 0,3716 | 0,4026 | 0,4335 | 0,4645 | 0,4955 | 0,5265 |
|   | 0,660 | 26 | 0,0335 | 0,0671 | 0,1006 | 0,1342 | 0,1677 | 0,2013 | 0,2348  | 0,2684  | 0,3019   | 0,3355 | 0,3690 | 0,4026 | 0,4361 | 0,4697 | 0,5032 | 0,5368 | 0,5703 |
|   | 0,711 | 28 | 0,0361 | 0,0723 | 0,1084 | 0,1445 | 0,1806 | 0,2168 | 0,2529  | 0,2890  | 0,3252   | 0,3613 | 0,3974 | 0,4335 | 0,4697 | 0,5058 | 0,5419 | 0,5781 | 0,6142 |
|   | 0,762 | 30 | 0,0387 | 0,0774 | 0,1161 | 0,1548 | 0,1935 | 0,2323 | 0,2710  | 0,3097  | 0,3484   | 0,3871 | 0,4258 | 0,4645 | 0,5032 | 0,5419 | 0,5806 | 0,6194 | 0,6581 |
|   | 0,813 | 32 | 0,0413 | 0,0826 | 0,1239 | 0,1652 | 0,2065 | 0,2477 | 0,2890  | 0,3303  | 0,3716   | 0,4129 | 0,4542 | 0,4955 | 0,5368 | 0,5781 | 0,6194 | 0,6606 | 0,7019 |
|   | 0,864 | 34 | 0,0439 | 0,0877 | 0,1316 | 0,1755 | 0,2194 | 0,2632 | 0,3071  | 0,3510  | 0,3948   | 0,4387 | 0,4826 | 0,5265 | 0,5703 | 0,6142 | 0,6581 | 0,7019 | 0,7458 |

Area proxima:  $0,1755 \text{ m}^2$ 


### Verificación:

$$ATRv = 16 \times 0,1755 \,\text{m}^2 = 2,808 \,\text{m}^2$$


$$Vr = \underline{Qv} \xrightarrow{} \Rightarrow \underline{104,40 \text{ m}^3/\text{min}} \xrightarrow{} \Rightarrow 37,18 \text{ m/min}$$

$$ATRv \qquad 2,808 \text{ m}^2$$

# Rejilla comercial para Extracción:



### Anexos



| Qv=         | 104,4     | m3/min               |            |  |  |  |
|-------------|-----------|----------------------|------------|--|--|--|
| Qcr=        | Qv / #    |                      |            |  |  |  |
| QCr=        | 104,4     | 17                   |            |  |  |  |
| Qcr=        | 6,14      | INYECCIÓN            |            |  |  |  |
| ΔVelocidad= | (VM-Vm) / |                      |            |  |  |  |
| ΔVelocidad= | (380-36,0 | (380-36,06) / (17-1) |            |  |  |  |
| ∆Velocidad= | 21,50     | m/min                |            |  |  |  |
|             |           |                      |            |  |  |  |
| Qv=         | 104,4     | m3/min               |            |  |  |  |
| Qcr=        | Qv / #    |                      |            |  |  |  |
| QCr=        | 104,4     | 16                   |            |  |  |  |
| Qcr=        | 6,53      | m3/min               | EXTRACCIÓN |  |  |  |
| ΔVelocidad= | (VM-Vm) / |                      |            |  |  |  |
| ΔVelocidad= | (360-37,1 |                      |            |  |  |  |
| ∆Velocidad= | 21,52     | m/min                |            |  |  |  |

| PRE DIMENSIONAMIENTO DE DUCTOS |              |        |                    |      |                     |      |                               |      |                       |      |  |  |
|--------------------------------|--------------|--------|--------------------|------|---------------------|------|-------------------------------|------|-----------------------|------|--|--|
|                                |              | m3/min | m/min              | m2   | m³                  | m*m  |                               | n*m  | m*m                   |      |  |  |
|                                | TRAMO CAUDAL |        | VELOCID<br>AD ÁREA |      | SECCIÓN<br>CUADRADA |      | SECCIÓN<br>RECTANGULAR<br>4-1 |      | SECCIÓN<br>DEFINITIVA |      |  |  |
|                                | INY-R1       | 104,4  | 380                | 0,27 | 0,52                | 0,52 | 0,26                          | 1,05 | 0.3                   | 1    |  |  |
|                                | R1-R2        | 6,14   | 36,06              | 0,17 | 0,41                | 0,41 | 0,21                          | 0,83 | 0,2                   | 0,9  |  |  |
|                                | R1-R3        | 92,12  | 358,50             | 0,26 | 0,51                | 0,51 | 0,25                          | 1,01 | 0,25                  | 1    |  |  |
|                                | R3-R4        | 12,28  | 57,56              | 0,21 | 0,46                | 0,46 | 0,23                          | 0,92 | 0,25                  | 0,9  |  |  |
|                                | R4-R5        | 6,14   | 36,06              | 0,17 | 0,41                | 0,41 | 0,21                          | 0,83 | 0,2                   | 0,9  |  |  |
|                                | R3-R6        | 73,69  | 294,02             | 0,25 | 0,50                | 0,50 | 0,25                          | 1,00 | 0,25                  | 1    |  |  |
| SISTEMA                        | R6-R7        | 12,28  | 57,56              | 0,21 | 0,46                | 0,46 | 0,23                          | 0,92 | 0,25                  | 0,9  |  |  |
| DE<br>INYECCIÓN                | R7-R8        | 6,14   | 36,06              | 0,17 | 0,41                | 0,41 | 0,21                          | 0,83 | 0,2                   | 0,85 |  |  |
| INTECCION                      | R6-R9        | 55,27  | 229,53             | 0,24 | 0,49                | 0,49 | 0,25                          | 0,98 | 0,25                  | 1    |  |  |
|                                | R9-R10       | 12,28  | 57,56              | 0,21 | 0,46                | 0,46 | 0,23                          | 0,92 | 0,25                  | 0,9  |  |  |
|                                | R10-R11      | 6,14   | 36,06              | 0,17 | 0,41                | 0,41 | 0,21                          | 0,83 | 0,2                   | 0,85 |  |  |
|                                | R9-R12       | 36,85  | 165,04             | 0,22 | 0,47                | 0,47 | 0,24                          | 0,95 | 0,25                  | 0,9  |  |  |
|                                | R12-R13      | 12,28  | 57,56              | 0,21 | 0,46                | 0,46 | 0,23                          | 0,92 | 0,25                  | 0,9  |  |  |
|                                | R13-R14      | 6,14   | 36,06              | 0,17 | 0,41                | 0,41 | 0,21                          | 0,83 | 0,2                   | 0,85 |  |  |
|                                | R12-R15      | 18,42  | 79,05              | 0,23 | 0,48                | 0,48 | 0,24                          | 0,97 | 0,25                  | 0,9  |  |  |
|                                | R15-R16      | 12,28  | 57,56              | 0,21 | 0,46                | 0,46 | 0,23                          | 0,92 | 0,25                  | 0,9  |  |  |
|                                | R16-R17      | 6,14   | 36,06              | 0,17 | 0,41                | 0,41 | 0,21                          | 0,83 | 0,2                   | 0,85 |  |  |

| PRE DIMENSIONAMIENTO DE DUCTOS |         |        |               |      |                     |      |       |                                          |                       |     |  |  |
|--------------------------------|---------|--------|---------------|------|---------------------|------|-------|------------------------------------------|-----------------------|-----|--|--|
|                                |         | m3/min | m/min         | m2   | m*                  | m    | m     | *m                                       | m*m                   |     |  |  |
|                                | TRAMO   | CAUDAL | VELOCID<br>AD | ÁREA | SECCIÓN<br>CUADRADA |      | RECTA | CIÓN<br>NGULAR<br>-1                     | SECCIÓN<br>DEFINITIVA |     |  |  |
|                                | EXT-1   | 104,40 | 360           | 0,29 | 0,54                | 0,54 | 0,27  | 1,08                                     | 0.3                   | 1   |  |  |
|                                | 1-R28   | 71,78  | 252,39        | 0,28 | 0,53                | 0,53 | 0,27  | 1,07                                     | 0.3                   | 1   |  |  |
|                                | R28-R27 | 65,25  | 230,87        | 0,28 | 0,53                | 0,53 | 0,27  | 1,06                                     | 0.3                   | 1   |  |  |
|                                | R27-R26 | 58,73  | 209,35        | 0,28 | 0,53                | 0,53 | 0,26  | 26 1,06<br>26 1,05<br>26 1,05<br>26 1,04 | 0.3                   | 1   |  |  |
|                                | R26-R25 | 52,20  | 187,83        | 0,28 | 0,53                | 0,53 | 0,26  | 1,05                                     | 0.3                   | 1   |  |  |
|                                | R25-R24 | 45,68  | 166,31        | 0,27 | 0,52                | 0,52 | 0,26  | 1,05                                     | 0.3                   | 1   |  |  |
| SISTEMA                        | R24-R23 | 39,15  | 144,79        | 0,27 | 0,52                | 0,52 | 0,26  | 1,04                                     | 0.3                   | 1   |  |  |
| DE<br>EXTRACCIÓN               | R23-R22 | 32,63  | 123,27        | 0,26 | 0,51                | 0,51 | 0,26  | 1,03                                     | 0.3                   | 1   |  |  |
| EXTRACCION                     | R22-R21 | 26,10  | 101,74        | 0,26 | 0,51                | 0,51 | 0,25  | 1,01                                     | 0.3                   | 0.9 |  |  |
|                                | R21-R20 | 19,58  | 80,22         | 0,24 | 0,49                | 0,49 | 0,25  | 0,99                                     | 0.3                   | 0.9 |  |  |
|                                | R20-R19 | 13,05  | 58,70         | 0,22 | 0,47                | 0,47 | 0,24  | 0,94                                     | 0.3                   | 0.9 |  |  |
|                                | R19-R18 | 6,53   | 37,18         | 0,18 | 0,42                | 0,42 | 0,21  | 0,84                                     | 0.3                   | 0.8 |  |  |
|                                | 1-R29   | 32,63  | 123,27        | 0,26 | 0,51                | 0,51 | 0,26  | 1,03                                     | 0.3                   | 1   |  |  |
|                                | R29-R30 | 26,10  | 101,74        | 0,26 | 0,51                | 0,51 | 0,25  | 1,01                                     | 0.3                   | 0.9 |  |  |
|                                | R30-R31 | 19,58  | 80,22         | 0,24 | 0,49                | 0,49 | 0,25  | 0,99                                     | 0.3                   | 0.9 |  |  |
|                                | R31-R32 | 13,05  | 58,70         | 0,22 | 0,47                | 0,47 | 0,24  | 0,94                                     | 0.3                   | 0.9 |  |  |
|                                | R32-R33 | 6,53   | 37,18         | 0,18 | 0,42                | 0,42 | 0,21  | 0,84                                     | 0.3                   | 0.8 |  |  |