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Genome-wide variation study and inter-
tissue communication analysis unveil
regulatory mechanisms of egg-laying
performance in chickens

Dandan Wang 1,2, Lizhi Tan 3, Yihao Zhi1, Lina Bu3, Yangyang Wang1,
Zhang Wang 1, Yulong Guo1, Weihua Tian 1, Chunlin Xu4, Donghua Li1,5,
Zhuanjian Li1,5, Ruirui Jiang1,5, Ruili Han1,5, Guoxi Li1,5, Yongqiang Wang2,
Dong Xia 6, Yadong Tian1,5, Ian C. Dunn 7, Xiaoxiang Hu 3, Hong Li 1,5 ,
Yiqiang Zhao 3 , Xiangtao Kang 1,5 & Xiaojun Liu 1,5

Egg-laying performance is of great economic importance in poultry, but the
underlying genetic mechanisms are still elusive. In this work, we conduct a
multi-omics and multi-tissue integrative study in hens with distinct egg pro-
duction, to detect the hub candidate genes and construct hub molecular
networks contributing to egg-laying phenotypic differences.We identifiy three
hub candidate genes as egg-laying facilitators: TFPI2, which promotes the
GnRH secretion in hypothalamic neuron cells; CAMK2D, which promotes the
FSHβ and LHβ secretion in pituitary cells; and OSTN, which promotes granu-
losa cell proliferation and the synthesis of sex steroid hormones.We reveal key
endocrine factors involving egg production by inter-tissue crosstalk analysis,
and demonstrate that both a hepatokine, APOA4, and an adipokine, ANGPTL2,
could increase egg production by inter-tissue communication with
hypothalamic-pituitary-ovarian axis. Together, These results reveal the mole-
cular mechanisms of multi-tissue coordinative regulation of chicken egg-
laying performance and provide key insights to avian reproductive regulation.

Egg production traits are economically most important in poultry
industry. After a long-term breeding selection, the average annual egg
numbers in the commercial layers have become significantly higher
than that in the indigenous breed’s1. To understand the underlying
genetic bases that control the egg-laying performance, many attempts
have been made worldwide. A large number of genetic variants and
more than 180 candidate genes have been discovered in different lines

and F2 resource populations based on quantitative trait loci mapping
and genome-wide association study (GWAS)2–6, which were sig-
nificantly associatedwith egg production traits such as age at first egg,
egg number, laying rate and clutch size at the genomic level. However,
the largest effect variation only accounted for 5.6% of the phenotypic
variance of egg production traits7, and numerous other candidate
genes and loci with small effects had yet to be mined.

Received: 10 December 2023

Accepted: 22 July 2024

Check for updates

1College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China. 2College of Animal Science and Veterinary Medicine, Henan
Institute of Science and Technology, Xinxiang, China. 3State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural
University, Beijing, China. 4Henan Sangao Agriculture and Animal Husbandry Co, Ltd, Gushi, China. 5International Joint Research Laboratory for Poultry
Breedingof Henan, Zhengzhou,China. 6Department of Pathobiologyand Population Sciences, TheRoyal VeterinaryCollege, London, UK. 7TheRoslin Institute
and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK. e-mail: lihong19871202@163.com; yiqiangz@cau.edu.cn;
xtkang2001@263.net; xjliu2008@hotmail.com

Nature Communications |         (2024) 15:7069 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4269-0022
http://orcid.org/0000-0003-4269-0022
http://orcid.org/0000-0003-4269-0022
http://orcid.org/0000-0003-4269-0022
http://orcid.org/0000-0003-4269-0022
http://orcid.org/0000-0001-8522-545X
http://orcid.org/0000-0001-8522-545X
http://orcid.org/0000-0001-8522-545X
http://orcid.org/0000-0001-8522-545X
http://orcid.org/0000-0001-8522-545X
http://orcid.org/0000-0003-4864-7551
http://orcid.org/0000-0003-4864-7551
http://orcid.org/0000-0003-4864-7551
http://orcid.org/0000-0003-4864-7551
http://orcid.org/0000-0003-4864-7551
http://orcid.org/0000-0001-9817-6087
http://orcid.org/0000-0001-9817-6087
http://orcid.org/0000-0001-9817-6087
http://orcid.org/0000-0001-9817-6087
http://orcid.org/0000-0001-9817-6087
http://orcid.org/0000-0003-4571-2776
http://orcid.org/0000-0003-4571-2776
http://orcid.org/0000-0003-4571-2776
http://orcid.org/0000-0003-4571-2776
http://orcid.org/0000-0003-4571-2776
http://orcid.org/0000-0003-3630-0120
http://orcid.org/0000-0003-3630-0120
http://orcid.org/0000-0003-3630-0120
http://orcid.org/0000-0003-3630-0120
http://orcid.org/0000-0003-3630-0120
http://orcid.org/0000-0001-7045-0283
http://orcid.org/0000-0001-7045-0283
http://orcid.org/0000-0001-7045-0283
http://orcid.org/0000-0001-7045-0283
http://orcid.org/0000-0001-7045-0283
http://orcid.org/0000-0003-3869-1583
http://orcid.org/0000-0003-3869-1583
http://orcid.org/0000-0003-3869-1583
http://orcid.org/0000-0003-3869-1583
http://orcid.org/0000-0003-3869-1583
http://orcid.org/0000-0002-0076-3476
http://orcid.org/0000-0002-0076-3476
http://orcid.org/0000-0002-0076-3476
http://orcid.org/0000-0002-0076-3476
http://orcid.org/0000-0002-0076-3476
http://orcid.org/0000-0002-9628-7135
http://orcid.org/0000-0002-9628-7135
http://orcid.org/0000-0002-9628-7135
http://orcid.org/0000-0002-9628-7135
http://orcid.org/0000-0002-9628-7135
http://orcid.org/0000-0001-7527-8793
http://orcid.org/0000-0001-7527-8793
http://orcid.org/0000-0001-7527-8793
http://orcid.org/0000-0001-7527-8793
http://orcid.org/0000-0001-7527-8793
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50809-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50809-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50809-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50809-9&domain=pdf
mailto:lihong19871202@163.com
mailto:yiqiangz@cau.edu.cn
mailto:xtkang2001@263.net
mailto:xjliu2008@hotmail.com


Meanwhile, selective sweep analyses among breeds with large
phenotypic differences have been applied on exploration of the
genomic regions and genes related to egg-laying performance1,8,9.
Comparative transcriptome analysis of tissues in hypothalamic-
pituitary-ovarian (HPO) axis and different hierarchical follicles have
identified a number of candidate genes and signaling pathways which
potentially involved in reproductive development10, egg-laying
difference11, follicle selection, and reproductive hormone synthesis12,
providing potential bases for the regulatory mechanisms of egg-laying
performance in chicken. However, only a few candidate genes known
to be involved in reproductive regulation have been identified. Espe-
cially, some genetic causal genes have exhibited tissue bias13, which
makes it difficult to identify the causal genes and molecular mechan-
isms that influence complex traits with just one of the above methods
or single tissue13. The multi-tissue multi-omics systems biology
approach could be more effectively at recognizing the causal genes
affecting complex traits14, which provides a holistic understanding of
the systemic complexity of organisms and deduces molecular inter-
actions in the form of molecular networks from phenotypic related
tissues14. This method has successfully facilitated the comprehensive
analysis of human complex diseases and the detection of drug targets14.

In fact, egg production traits are the result of highly coordinated
regulation of multiple tissues, which is not only directly controlled by
HPO axis tissues, but also indirectly regulated by other peripheral
tissues. Accumulated evidences have indicated that the liver and
abdominal fat, as the vital tissues of energy storage and lipid dynamic
changes, are closely related to the development and maturation of
HPO axis and the deposition of vitellinematerials, thus regulating egg-
laying performance15,16. It is noteworthy that the synergistic effects of
multi-tissue on reproductive regulation are effectuated by inter-tissue
signal communication17. Endocrine factors as a bridge between inter-
tissue signal crosstalk have been investigated in many physiological
aspects such as metabolism, immune system function and reproduc-
tive process18,19. For instance, adiponectin (AdipoQ), an endocrine
factor specifically secreted by mature adipocytes, could mediate
hypothalamic gonadotropin-releasing hormone (GnRH) secretion and
GnRH-induced pituitary luteinizing hormone (LH) release by targeting
adiponectin receptors (AdipoR1 and AdipoR2) in the corresponding
tissues20. Therefore, systematic analysis of multi-tissue transcriptomes
combinedwith other omicswill be helpful to comprehensively analyze
the molecular regulatory mechanisms of egg production in poultry.

In this work, we first conduct multi-method GWAS and selective
sweep analysis based onmulti-breed genome resequencing to identify
genetic signals and candidate genes involving egg production traits.
Subsequently, we perform multi-tissue comparative transcriptome
analyses of hypothalamus, pituitary, ovary, liver, and abdominal fat
between high- and low-yield chickens. The laying-related hub candi-
date genes (HCGs) are systematically excavated by integrative analysis
of the above genomic and transcriptome studies. We then employ the
Quantitative Endocrine Network Interaction Estimation (QENIE) strat-
egy to identify laying-related key endocrine factors. Furthermore, we
construct the molecular regulatory networks of HCGs within multiple
tissues, verify their function in primary cells of tissues in HPO axis, and
explore the inter-tissue communication mechanism of key endocrine
factors regulating egg production via the tissue-specific over-
expression in vivo. Our findings provide a synergistic and interacting
molecular network and regulatory mechanism of egg-laying perfor-
mance in chickens, and will broaden the perspective of exploring
genetic bases of other complex traits.

Results
Potential genetic variants and gene sets involving egg
production
We resequenced 900 individuals of Gushi chicken with large pheno-
typic variations in egg production (the coefficient of variance from

11.17% to 75.05% across different traits) to trace the genetic signals
association with egg production traits, including egg number (EN) at
different laying periods (EN21-25w, EN26-30w, EN31-35w, EN36-43w,
EN31-43w and ENT), average clutch size (ACS) at different laying per-
iods (ACS21-25w, ACS26-30w, ACS31-35w, ACS36-43w, ACS31-43w and
ACST) andmaximum clutch size (MCS) (Supplementary Table 1). After
quality control and filtration, a total of 13,467,604 autosomal SNPs
from 888 individuals were obtained. The SNP-based heritability was
estimated ranging from 0.05 to 0.42 over the thirteen egg production
traits (SupplementaryData 1). A stronggenetic positive correlationwas
observed among egg number and clutch size, and the genetic corre-
lation coefficients range from 0.56 to 1.00 (Supplementary Data 1).

Further, we combined the univariate SNP-based GWAS, the uni-
variate haplotype-based GWAS (hap-based GWAS), and the multi-
variate canonical correlation analysis (CCA)-based GWAS to uncover
the potential small-effect and pleiotropic variants and gene sets rela-
ted to egg production traits in Gushi chicken. Multiple signaling
regions located on autosomes were identified, some of whichwere co-
located by multiple egg production traits or by multiple GWAS
methods (Fig. 1, Supplementary Figs. 1, 2). For instance, a 580 kb region
located on GGA3 (108.04–108.62Mb) was identified by SNP-based
GWAS (EN21-25w, EN36-43w, and ENT), which contained two genes
TFAP2B and TFAP2D (Supplementary Fig. 3a). A 40 kb region located
on GGA24 (4.19–4.23Mb) was identified across SNP-based GWAS
(EN31-43w, ACS31-43w and ACST), haplotype-based GWAS (EN31-43w,
ENT, ACS31-43w, ACST, and MCS), and CCA-based GWAS (CS), which
contained four genes THY1, USP2,MFRP and C1QTNF5 (Supplementary
Fig. 3b). Of the six genes, TFAP2D and THY1 were previously identified
as the candidate genes related to 500-day egg number in a native
chicken4, and related to 196–227-day egg number in meat-type
chicken6, respectively.

Overall, the SNP-based GWAS approach revealed the potential
72 large-effect (P < 1.01E-06) and 4981 small-effect SNPs (1.01E-
06 < P < 1.00E-04) (Supplementary Data 2), and the haplotype-based
GWAS approach revealed the potential 251 large-effect and 8007
small-effect haplotypes on egg production traits (Supplementary
Data 3). The total effects of the potential 5053 SNPs and 8258 hap-
lotypes could explain 37.41–64.46% and 35.99–63.50% of phenotypic
variances of different egg production traits, respectively (Supple-
mentary Table 2). The CCA-based GWAS approach identified the
potential 176 large-effect and 3530 small-effect SNPs for EN, clutch
size (CS) or all EN and CS (all-EN-CS) (Supplementary Data 4).
Focusing on the upstream anddownstream 50 kb genomic regions of
all these potential SNPs and haplotypes, we annotated 4668 (SNP-
GWASGs), 6683 (hap-GWASGs), and 4071 (CCA-GWASGs) genes
within these genomic intervals in SNP-based GWAS, haplotype-based
GWAS and CCA-based GWAS, respectively (Supplementary Data 5).
Of these genes, 105 overlapped with the previously reported 213
candidate genes (213 RCGs from 2011 to 2023) that were significantly
associated with EN, laying rate (LR), age at first egg (AFE), number of
clutches (numC) and longest clutch (LC)2–7 (Supplementary Data 6,
Supplementary Fig. 4). Some overlapped candidate genes such as
follicle-stimulating hormone receptor (FSHR), growth differentiation
factor 9 (GDF9), estrogen receptor 1 (ESR1), estrogen receptor 2
(ESR2), matrix metalloproteinase 13 (MMP13), luteinizing hormone/
choriogonadotropin receptor (LHCGR), prolactin-releasing hormone
receptor (PRLHR) and neurexin 1 (NRXN1), which have been reported
to function in regulating chicken reproduction2.

Selective regions and genes related to layer breed formation
Modern chicken breeds are primarily domesticated from the red
jungle fowl9. There was a long process of early domestication and
later phenotypic-oriented breeding of varieties or lines, which
resulted in a rapid increase in the egg production, from 5-9 eggs per
year in red jungle fowl to over 300 eggs per year in modern
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commercial layers1. To detect genes that were subject to genetic
selection during domestication or breeding associated with egg-
laying phenotype, 20 wild ancestors1,21, 50 native birds22 and 20
layers1 (Supplementary Data 7) were collected for comparative
genomic analysis. A total of ~14.65 Gb high-quality clean reads was
generated with an average sequencing depth of 13.82× coverage per
individual (Supplementary Data 7). After filtration, a final set of 16.95
million SNPs (Supplementary Data 8) was obtained. A comprehensive
analysis of genetic relationships among these breeds was conducted.
As expected, phylogenetic analysis and principal component analysis

(PCA) divided wild ancestors, native chickens, and commercial layers
into separate clusters (Fig. 2a, b). The commercial layer breeds had a
sizeable genetic difference with native chicken breeds or wild
ancestors. Additionally, two layer breeds were also separated, pos-
sibly due to the considerable differences in other physiological
characteristics, such as body weight (White Leghorn hen weigh
around 1.8 kg, while Rhode Island Red hen weigh around 2.9 kg), the
different geographical locations and various artificial selection
intensities9 (Supplementary Fig. 5). LD decay analysis proved a
stronger selection pressure on layer breed chickens (Fig. 2c).
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Fig. 1 | Manhattan and quantile-quantile (Q-Q) plots of SNP-based whole-gen-
ome association signals for egg production traits in Gushi chicken. Association
testing was performed using linear mixed model. Association testing was per-
formed using linear mixed model. The significance was corrected by a relaxed
correction for multiple comparisons and was self-defined as the large effect sig-
nificance threshold (P = 1/(SNPnumbers);−log10(P) = 6; the horizontal solid line) or
small effect significance threshold (−log10(P) = 4; the horizontal dashed line).

N = 888 individuals. EN21-25w, EN26-30w, EN31-35w, EN36-43w, EN31-43w repre-
sent egg number at 21–25 weeks of age, 26–30 weeks of age, 31–35 weeks of age,
36–43 weeks of age, 31–43 weeks of age, respectively. ENT represents total egg
number. MCS represents maximum clutch size. ACS21-25w, ACS26-30w, ACS31-
35w,ACS36-43w, andACS31-43w represent average clutch size in each offive stages
consistent with the statistical stage division of egg number. ACST represents total
average clutch size.
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Fig. 2 | Comparative genomic analysis revealed selective regions and genes
related to layer breed formation. a Phylogenetic tree analysis of different breeds.
b Principal component analysis of different breeds. c Linkage disequilibrium decay
analysis of different breeds. d Selective signals of layer vs. RJF, layer vs. native and
native vs. RJF basedon ZFST analysis. The horizontal red dashed lines correspond to
the top 5% threshold. e Venn diagram of potential selected genes (PSGs) in three
comparison groups. f Venn diagram of the intersection of GWASGs and PSGs.
g Selective signals of CAMK2D in the three comparison groups. h SNPs and hap-
lotypes in CAMK2D significantly associated with egg production traits in Gushi
chicken. Chi-square test and F-test were performed to access the association sig-
nificance in CCA-based GWAS and haplotype-based GWAS, respectively. CS

represents clutch size, MCS represents maximum clutch size, and ACS26-30w
represents average clutch size from31 to43weeks of age. iThe genotypepattern of
SNPs located in the promoter and intron regions of CAMK2D. j Tissue expression
pattern of CAMK2D in 30-week-old Hy-line layers and native chickens (n = 3 for the
expression in different tissues; n = 8 for the expression in different breeds). Layer:
WL (White Leghorn) andRIR (Rhode IslandRed). Native chickenbreeds: Gushi (GS),
Lushi (LS), Xichuan Black Bone (XCBB), Zhengyang San Huang (ZYSH) and Henan
Gamecock (HNG) chickens. Wild breed: RJF (Red Jungle Fowl). The data for (j) are
presented as the mean± SEM, and the indicated P values (*P <0.05, **P <0.01) are
based on two-tailed unpaired t-test. Source data are provided as a Source Data file.
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To detect the potential genomic selective regions (PGSRs) on
autosomes in the formation of layer breeds, we scanned the genome
for regions with the high population genetic differentiation (FST) and
the high differences in genetic diversity (π-ratio) in 40-kb sliding
windows in native vs. RJF, layer vs. native, and layer vs. RJF comparison
groups. In total, we identified 821 PGSRs (top 5% signals, with
Z-transformed FST (ZFST) > 1.77 and log2(π-ratio) < −0.17) covering or
being near to 385 potential selective genes (PSGs) in native vs. RJF
group, 974 PGSRs (ZFST > 1.84 and log2(π-ratio) < −0.86) carrying 544
PSGs in layer vs. native group, and 1390 PGSRs (ZFST > 1.82 and log2(π-
ratio) < −0.73) carrying 719 PSGs in layer vs. RJF group, respectively
(Fig. 2d, Supplementary Fig. 6, Supplementary Data 9–11). In these
selection analyses, several PSGs associated with body size23 (insulin-
like growth factor 1, IGF1, ZFST = 6.05), muscle development24 (sphin-
gomyelin phosphodiesterase 3, SMPD3, ZFST = 8.48) and reproductive
processes1,9 (gonadotropin-releasing hormone 1, GnRH-1, ZFST = 6.61)
were strongly selected in layers and overlapped with previously
detected genomic sweep regions (Fig. 2d). Combinedwith all selection
analyses of three comparison groups, a total of 1165 PSGs were
detected as potential regulators of phenotypic traits in the formation
of layer breed (Fig. 2e, Supplementary Data 12).

Key candidate genes affecting egg production
By comparing the gene lists between GWASGs and PSGs, 612 over-
lapping genes that were strongly selected and significantly associated
with egg production traits were screened as key candidate genes
(KCGs) affecting chicken egg production at different stages (Fig. 2f,
Supplementary Data 13). These KCGs mainly involved in regulation of
system process (−log10(Q) = 1.67), transport of small molecules
(−log10(Q) = 1.67), regulation of cellular response to stress
(−log10(Q) = 1.67), intermembrane lipid transfer (−log10(Q) = 1.67) and
regulation of protein-containing complex disassembly (−log10(Q) =
1.67) (Supplementary Fig. 7).

Of the 612 KCGs, 12 genes were subjected to the consistent
selection in domestication and improvement stages, among which
four genes, including calcium/calmodulin dependent protein kinase II
delta (CAMK2D)25, phosphodiesterase 3A (PDE3A)26, AKT serine/threo-
nine kinase 3 (AKT3)27, and forkhead box J3 (FOXJ2)28 were reported to
be associated with reproductive regulation (Fig. 2d, Supplementary
Data 14). TheCAMK2Dwere involved in calcium signaling pathway that
mobilized Ca2+ stores and GnRH signaling pathway that facilitated the
expression and secretion of LH and FSH in mouse25, but its function in
poultry was unclear. Additionally, SNPs genotypes of CAMK2D were
nearly fixed in layer breeds (πlayer = 3.87E-05) (Fig. 2g), and the SNPs
and haplotypes in CAMK2D was mainly associated with clutch size
including CS, ACS26-30w and MCS in Gushi chickens (4 < −log10(P) ≤
4.88) (Fig. 2h). The genotype pattern of variants located in the pro-
moter and intron regions of CAMK2D gene were different among RJF,
native breeds, and layer breeds (Fig. 2i). Real-time quantitative PCR
(qRT-PCR) analysis showed that CAMK2D was highly expressed in the
pituitary of 30-week-old hens, and a highest expression level in the
pituitary of high-yield Hy-Line layers, followed by the low-yield native
chicken breeds (GS and LS chicken) (Fig. 2j). Furthermore, GnRH
induced the up-regulation of CAMK2D expression in chicken pituitary
cells, thus promoting the synthesis and secretion of FSHβ and LHβ in
pituitary to positively regulate egg production in chicken (Supple-
mentary Fig. 8).

Molecular networks driving the differences in egg production
Egg production trait is a typical complex trait involvingmultiple tissues
regulation, including HPO axis, liver, and abdominal fat15,16. Here, we
tracked the egg-laying phenotypes of Gushi hens in the 14th generation
at 20, 28, 36, and 43 weeks of age, including EN, reproductive hormone
levels, liver index (LI), abdominal fat percentage (AFP), ovarian weight
(OW) and ovarian follicle numbers (Supplementary Fig. 9, 10,

Supplementary Data 15, 16), and found that the decrease of EN in
decline laying stage (GS36w and GS43w) was significantly correlated
with the increase of LI and AFP (P <0.05), whereas OW only affected
early egg production (GS20w) (P <0.05) (Supplementary Data 16).

To construct and excavate the hub molecular networks that reg-
ulate egg production via synergistic interaction of multi-tissues, we
then collected five tissues including hypothalamus, pituitary, ovary,
liver and abdominal fat of high- and low-yield hens at 43 weeks of age,
respectively, for transcriptome analyses. We constructed 78 mRNA
libraries, and generated a total of 561.91 Gb high-quality RNA-seq data
(~7.20Gb sequences per sample) (Supplementary Data 17). A total of
17,063 genes including 14,487 annotated genes and 2576 unannotated
genes were expressed in the five tissues. The PCA clearly distinguished
thefive tissues, but did not completely separate the high- and low-yield
group (Fig. 3a).

Using weighted gene co-expression network analysis (WGCNA),
we detected hub genes that were significantly associated with egg-
laying related phenotypes (Fig. 3b). The EN39-43w and ENT, as well as
the serum concentrations of FSH, LH, PROG, and E2 were used for
WGCNA (Fig. 3c, Supplementary Fig. 11). A total of 13 significant
modules (P < 0.05) including 2425 module hub genes (MHGs) were
positively correlated with egg production (designated as pMHGs),
including 472 in the hypothalamus, 174 in the pituitary, 831 in the
ovary, 870 in the liver and 303 in the abdominal fat (Fig. 3c, Supple-
mentary Data 18). Meanwhile, a total of 25 significant modules
(P < 0.05) including 7088 MHGs were negatively correlated with egg
production (designated as nMHGs), including 919 in the hypothala-
mus, 2372 in the pituitary, 3277 in theovary, 1385 in the liver and 1011 in
the abdominal fat (Supplementary Data 19). Furthermore, a total of
106, 225, 1191, 1030, and 886 differentially expressed genes (DEGs)
were detected in the hypothalamus, pituitary, ovary, liver, and
abdominal fat between high- and low-yield hens (Fig. 3d, Supplemen-
tary Fig. 12, SupplementaryData 20). By integrating theDEGswith 2425
pMHGs and 7088 nMHGs (Fig. 3e), a total of 628 differential pMHGs
(DpMHGs) (Supplementary Data 21) and 1075 differential nMHGs
(DnMHGs) (Supplementary Data 22) were obtained, which contained
24 positive and 30 negative KCGs, defined as HCGs, driving the egg-
laying phenotypic differences, respectively (Fig. 3f, Supplementary
Tables 3, 4). The significant differences in the expression of 3 HCGs
(TFPI2, TTPA, and ADGRG2) in hypothalamus and 6HCGs (OSTN, ANK2,
IL1RL1, ANO8, ADGRF5, and PLXDC2) in ovary of high- and low-yield
hens were verified by qRT-PCR (Supplementary Fig. 13).

Based on the co-expression relationships of DpMHGs and
DnMHGs in theWGCNAmodules, we constructedHCGs co-expression
regulatory networks in each of the five tissues (Fig. 4a, Supplementary
Figs. 14, 15). Based on GO annotation, the functional enrichments of
HCGs and its linked co-expression DpMHGs or DnMHGs were tissue-
specific. For example, the different positive HCGs co-expression net-
works were mainly involved in regulating carboxylic acid biosynthetic
process and amyloid-beta clearance in hypothalamus (gray modules),
luteinizing hormone secretion, intracellular transport and JAK-STAT
cascade in pituitary (white modules), as well as extracellular matrix
organization and transmembrane receptor protein serine/threonine
kinase signaling pathway in ovary (lightpink4 modules) (Fig. 4a).
Additionally, we observed that the gene connectivity of most HCGs
was not as high as that of other DpMHGs or DnMHGs, that is, most of
HCGs was not at the core of the regulatory networks. This echoed the
hypothesis of “omnigenic” model that for any given complex pheno-
type, most genes with genetic effects are distributed in the periphery
of core genes and collectively drive phenotypic changes through suf-
ficiently interconnected gene regulatory networks29.

Functional validation of HCGs in the HPO axis in vitro
We investigated the function ofHCGs inprimary cells from thepositive
regulatory network of the HPO axis, which drove female follicular
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development, egg maturation, and ovulation30. In hypothalamus, we
performed functional validation for the tissue factor pathway inhibitor
2 gene (TFPI2) (Fig. 4a), which was located on the selective region of
GGA2 (23.3–23.4Mb) (ZFST (Max) = 2.35 in native vs. RJF, ZFST (Max) =
1.81 in layer vs. RJF), and was significantly associated with ACS31-35w,
ACS31-43w and ACST in hap-based GWAS method and CS in CCA-
based GWAS in Gushi chickens (4 < −log10(P) ≤ 5.05) (Supplementary
Fig. 16). We first confirmed that the mRNA level of TFPI2 were sig-
nificantly higher in hypothalamus of high-yield group compared with
that of low-yield group in Gushi chickens at 28, 36, and 43weeks of age
(P ≤0.05, Fig. 4b). Functional gain and loss assays of TFPI2 in chicken
primary hypothalamic neuron cells indicated that TFPI2 could reduce
the expression level of neuropeptide VF precursor (NPVF, also named
GnIH, a gonadotropin-inhibiting hormone) and promote the secretion
of GnRH, but had no effect on GnRH expression (Supplementary
Fig. 17, Fig. 4c), which confirmed the regulatory function of TFPI2 on
the secretion of the hypothalamic reproductive hormone GnRH. We
also observed the response patterns of TFPI2-adjacent genes such as

FK506 binding protein 5 (FKBP5), asparaginase (ASPG), and solute
carrier family 38 member 4 (SLC38A4) in the regulatory network. The
result showed that all of these genes exhibited up-regulated expres-
sion upon TFPI2 overexpression and knockdown (Supplemen-
tary Fig. 18).

In ovary, we also performed functional validation for osteocrin
gene (OSTN) (Fig. 4a), which was located on the selective region of
GGA9 (13.7–14.0Mb) (ZFST (Max) = 4.55 in layer vs. RJF, ZFST (Max) =
3.97 in layer vs. native), and was significantly associated with multiple
egg production traits including EN26-30w, EN31-35w, EN36-43w, EN31-
43w, ACS21-25w, ACS26-30w, ACST, MCS, CS and all-EN-CS across
multiple GWAS methods in Gushi chickens (4 < −log10(P) ≤ 6.87)
(Supplementary Fig. 19). OSTN expression was significantly higher in
ovary tissue of high-yield group than low-yield group at 20, 36, and
43weeks of age (Fig. 4d). Functional gain and loss assays ofOSTN gene
in chicken ovarian granulosa cells (GCs) showed that OSTN could
promote the expression of mRNA and protein levels of steroid hor-
mone synthesis pathway genes (steroidogenic acute regulatory

Fig. 3 | Multi-tissue transcriptome analysis excavated hub candidate genes
regulating egg production. a Principal component analysis of sequencing sam-
ples from 5 tissues. GS43wLH and GS43wHH represent the low- and high-yield
groups of 43-week-old Gushi chickens in hypothalamus, respectively. The classi-
fication of other tissues are similar to the hypothalamus. b Pearson correlation
analysis of all phenotypes in 43-week-old Gushi chickens. AFP, LLC, LI, OW, and OI
represent abdominal fat percentage, liver lipid content, liver index, ovarianweight
and ovarian index, respectively. c Module-egg production traits relationships in
five tissues. d Differentially expressed genes (DEGs) obtained by comparing high-

and low-yield groups of different tissues. e The intersection of DEGs and module
hub genes (MHGs). pHMHGs represent the MHGs positively correlated with egg
production in hypothalamus. nHMHGs represent the MHGs negatively correlated
with eggproduction in hypothalamus. The representation ofMHGs in other tissues
is similar to that in hypothalamus. fThe intersectionof key candidate genes (KCGs)
and differential MHGs. The data in (b, c) are presented as the correlation coeffi-
cient, and the correlation significance (*P <0.05; **P <0.01 and ***P <0.001) were
performed by two-tailed unpaired t-test.
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protein gene (StAR), cytochrome P450 subfamily A member genes
(CYP17A1 and CYP19A1) and hydroxy-delta-5-steroid dehydrogenase, 3
beta- and steroid delta-isomerase 1 gene (3β-HSD))31 (Supplementary
Fig. 20, Fig. 4e, f) and up-regulate PROG and E2 hormone levels in cell
supernatant (Fig. 4g).Meanwhile, it was also observed thatOSTN could
promote GCs proliferation (Supplementary Fig. 21a and b) and up-

regulate the expression of oocyte-derived factors including GDF9 and
bone morphogenetic protein 15 gene (BMP15) (Supplementary
Fig. 21c), which harbored the promoting functions in follicle growth32.
The expression changes of OSTN-adjacent genes such as coiled-coil
domain containing 80 (CCDC80), polymerase I and transcript release
factor (PTRF), and fibrillin 1 (FBN1) in the regulatory network were

Fig. 4 | Functional validation of hub candidate genes in the HPO axis in vitro.
a Co-expression regulatory networks and functional enrichments of the hub can-
didate genes (HCGs) positively correlated with egg production in HPO axis tissues.
Node size indicates the connectivity betweengenes. The larger the node, the higher
the connectivity. The putative functions of module hub genes were investigated by
gene ontology (GO) enrichment analysis with R package clusterProfiler. The sta-
tistical significance (P <0.05) was performed by fisher’s precise test. b The
expression difference of TFPI2 in hypothalamus between high- and low-yield
groups at different laying stages (n = 6 for each group). c Effects of TFPI2 function
gain or loss on reproductive hormone GnRH secretion in chicken primary hypo-
thalamic neuron cells (n = 6 for each group in the mRNA level; n = 3 for each group

in the protein level). d The expression difference of OSTN in ovary between high-
and low-yield groups at different laying stages (n = 6 for each group). e, f Effects of
OSTN function gain or loss on the mRNA levels and protein levels of key genes
involved in steroid hormone synthesis pathway in chicken ovarian granulosa cells
(n = 5 for eachgroup ine;n = 3 for each group in (f)).g Effects ofOSTN function gain
or loss on E2 and PROG hormone levels in chicken ovarian granulosa cell super-
natant (n = 6 for each group). Data for (b–g) are presented as the mean ± SEM, and
the indicated P values (*P <0.05; **P <0.01 and ***P <0.001) are based on two-tailed
unpaired t-test. Source data are provided as a Source Data file.
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coincided with those of OSTN in the GCs (Supplementary Fig. 22).
These results suggested that OSTN gene perhaps positively affect egg
production by interconnecting with other genes to promote the
synthesis and secretion of PROG and E2 hormones in granulosa cells
and the follicle growth.

Key endocrine factors regulating egg production via inter-tissue
crosstalk
As organism is a whole coordinately regulated by multiple tissue sys-
tems, in addition to intra-tissue signaling, the inter-tissue crosstalk also
plays an indispensable role in reproduction regulation. We system-
atically screened the key endocrine factors of inter-tissue crosstalk
regulating egg production in chickens using a QENIE approach. All
transcriptome data from the above five tissues of high- and low-yield
Gushi chickens were used to detect the correlations between endo-
crine factors secreted from hypothalamus, pituitary, liver, and
abdominal fat, and their response genes in HPO axis tissues (Fig. 5a). A
total of 693, 641, 475, and 648 endocrine factors were identified in
the hypothalamus, pituitary, liver, and abdominal fat based on
the Universal Protein Resource (UniProt) database, respectively

(Supplementary Data 23). We constructed endocrine circuits of tissue
pairs and assessed strength of cross-tissue predictions for endocrine
circuits, termed Ssec. We generated the Ssec lists of potential media-
tors of origin-target tissue pair (top 100) (Supplementary Data 24–26).
A total of 35 hypothalamus-specific and 7 pituitary-specific endocrine
factors were identified (Supplementary Fig. 23). However, only 27 out
of 35 showed differential expression in the hypothalamus between
high- and low-yield groups (Supplementary Fig. 24), and were con-
sidered as key hypothalamic endocrine factors. Among the 27
hypothalamus-specific endocrine factors, somewerewell documented
about their reproductive regulatory functions, such as vasoactive
intestinal polypeptide (VIP)33, proenkephalin (PENK)34, and gremlin 2
(GREM2)35. Somewere involved in food intake and energymetabolism,
such as neuropeptide Y (NPY)36, pancreatic polypeptide (PPY)37,
orphenkephin precursor (PNOC)38, galanin and GMAP prepeptide
(GAL)39, and neuroregulatory peptide receptor (NMU)40. This sug-
gested that endocrine factors coordinated the dynamics of energy
metabolism and reproduction in the hypothalamus. Interestingly,
some secreted proteins such as growth and differentiation factor 10
(GDF10)41 and Wnt inhibitory factor 1 (WIF1)42 were also identified,

Fig. 5 | Multi-tissue systematic screening for key endocrine factors of inter-
tissue crosstalk regulating egg production in chicken. a Flow chart of inter-
tissue crosstalk analysis.bRank of all liver endocrine factors basedonSsec of liver-
HPO axis crosstalk. c FPKM of liver-specific endocrine factors in the liver of 43-
week-old Gushi chickens in high- (GS43wHL) and low-yield groups (GS43wLL)
(n = 7–8 for each group). d Liver endocrine factors of top 5% Ssec. e Expression of
APOA4 in different tissues of 43-week-old Gushi chickens (n = 3). f Expression dif-
ference of APOA4 in high- and low-yield groups at different laying stages (n = 6 for
each group). g Rank of all abdominal fat endocrine factors based on Ssec of
abdominal fat-HPO axis crosstalk. h FPKM of abdominal fat-specific endocrine
factors in the abdominal fat of 43-week-old Gushi chickens in high- (GS43wHA) and

low-yield groups (GS43wLA) (n = 8 for each group). i Abdominal fat endocrine
factors of top 5% Ssec. j Expression of ANGPTL2 in different tissues of 43-week-old
Gushi chickens (n = 3). k Expression difference of ANGPTL2 in high- and low-yield
groups at different laying stages (n = 6 for each group). Ssec indicates the strength
of cross-tissue predictions for endocrine circuits. GS28wL and GS28wH, GS36wL
and GS36wH, GS43wL and GS43wH, represent the high- and low-yield groups of
Gushi chickens at 28, 36, and 43 weeks of age, respectively. The data in
(c, e, f, h, j, k) are presented as themean± SEM; groupswith significant differences
(*P <0.05, **P <0.01, and ***P <0.001) were performed by two-tailed unpaired
t-test. Source data for are provided as a Source Data file.
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which suggesting their potential role in regulating egg production
through different pathways.

For the liver-HPO axis tissue pairs, 38 liver-specific endocrine
factors were identified (Fig. 5b, Supplementary Fig. 25). Fifteen of the
38 liver-endocrine factors were significantly differentially expressed in
the liver between high-and low-yield groups, including 7 positively and
8 negatively correlated with egg-laying phenotypes (Fig. 5c, Supple-
mentary Fig. 26), thus were selected as the key endocrine factors of
liver-HPO axis communication. Among the 7 key endocrine factors
positively correlated with egg-laying phenotypes (Fig. 5c), apolipo-
protein A4 (APOA4) ranked top among the three tissue pairs corre-
sponding to liver (top 5% Ssec in liver-hypothalamus, top 5% Ssec in
liver-pituitary, and top 15% Ssec in liver-ovary) (Fig. 5d, Supplementary
Data 25), and was significantly associated with egg production at
multiple laying stages (Fig. 5e, f), so was used for subsequent func-
tional validation.

For the abdominal fat-HPOaxis tissuepairs,we identified a total of
35 abdominal fat-specific endocrine factors (Fig. 5g, Supplementary
Fig. 27), among which, 19 were differentially expressed in abdominal
fat between high-and low-yield groups (Fig. 5h, Supplementary
Fig. 28), thus was selected as the key endocrine factors of abdominal
fat-HPO axis communication. Among the 19 abdominal fat-specific
endocrine factors, only angiopoietin-like 2 gene (ANGPTL2) from
abdominal fat-hypothalamus pair and cell death-inducing DFFA-like
effector a gene (CIDEA) from abdominal fat-pituitary pair were posi-
tively related to egg production (Fig. 5h) and ranked top 5% Ssec
(Fig. 5i), suggesting that most of abdominal fat-specific endocrine
factors in late layingperiodwerenot conducive to eggproduction. The
ANGPTL2 was significantly highly expressed in the abdominal fat and
associated with egg production at multiple laying stages (Fig. 5j, k),
thus was a candidate used for function test in abdominal fat-
hypothalamus communication.

Peripheral tissue-HPO axis crosstalk improves egg production
To further verify the regulatory effects of liver-specific and abdominal
fat-specific endocrine factors on egg production, we constructed liver-
specific APOA4 overexpressed adeno-associated virus (AAV9-APOA4)
and abdominal fat-specific ANGPTL2 overexpressed adeno-associated
virus (AAV9-ANGPTL2) and injected them into 12-week-old Gushi
pullets, respectively. We tracked the expressions of liver-specific
APOA4 and abdominal fat-specific ANGPTL2 in each group and deter-
mined the changes in the egg-laying related phenotypes after
10 weeks.

The liver-specific expression of APOA4 was reconfirmed in AAV9-
APOA4 group of 22-week-old Gushi hens (Fig. 6a). Both hepatic APOA4
mRNA level and serum APOA4 protein level in AAV9-APOA4 group at
22 weeks of age were obviously elevated compared with AAV9-NC1
group (Fig. 6b and c), indicating that APOA4 was successfully liver-
specific overexpressed in vivo. Hens receiving AAV9-APOA4 virus had
higher serum reproductive hormone levels (FSHβ, LHβ, E2, and PROG)
than those receiving AAV9-NC1 virus at 22 weeks of age (Fig. 6d).
Interestingly, APOA4 overexpression did not affect body weight and
liver index (LI) but decreased abdominal fat percentage (AFP) of hens
(P = 0.0037 in 22 weeks, P =0.1416 in 24 weeks) at 22 and 24 weeks of
age (Supplementary Fig. 29). In addition, APOA4 overexpression
increased ovary index (OI) (P =0.3747) (Supplementary Fig. 29,
Fig. 6e), the number of prehierarchical SYF (P =0.0316) and the per-
centage of preovulatory follicles in 22-week-old hens (Fig. 6f, g), the
number of prehierarchical SWF and LWF and the ratio of preovulatory
F4-F1 follicles in 24-week-old hens (Fig. 6h, i).Of note, weobserved that
the average laying rate from 21 to 24 weeks of age in AAV9-APOA4
group increased by 5.99%, compared with the AAV9-NC1 group
(Fig. 6j). In general, liver-specific endocrine factor APOA4 could sys-
tematically change reproductive hormone levels and affect ovarian

follicular development to further promote early egg production in
chicken.

Further, we explored the inter-tissue crosstalk mechanism
between liver endocrine factor APOA4 and HPO axis. Response tissue
pathways were first evaluated by screening the top 500 genes most
significantly associated with liver APOA4 targeting hypothalamus,
pituitary and ovarian tissues, respectively (Supplementary Data 27).
The top6pathways thatweremost significantly enriched in each tissue
pair were listed (Supplementary Table 5). We further examined the
mRNA levels of 11 respond genes in these pathways in APOA4 over-
expression experiment. Collagen type I alpha 2 chain (COL1A2) and
collagen type IV alpha 2 chain (COL4A2), key genes involved in focal
adhesion and ECM-receptor interaction pathway in hypothalamus,
nuclear receptor coactivator 2 (NCOA2), a gene involved in the thyroid
hormone signaling pathway in pituitary, solute carrier family 9 mem-
ber A1 (SLC9A1) and calcium voltage-gated channel auxiliary subunit
alpha2delta 1 (CACNA2D1), key genes involved in Adrenergic signaling
in cardiomyocytes in ovary, and regucalcin (RGN) and prostaglandin-
endoperoxide synthase 1 (PTGS1), key genes involved in the small
moleculemetabolic pathway inovary,were significantly induced toup-
regulate expression inAAV9-APOA4group (Supplementary Fig. 30). Of
the 7 key response genes, COL4A2, NCOA2 and RGN are GWASGs for
egg production traits, and PTGS1 is a PSG. These results indicated that
hepatic APOA4 could activate different signaling pathways and
response genes in different tissues of HPO axis by inter-tissue
crosstalk.

For the overexpression experiment of abdominal fat-specific
ANGPTL2 in vivo, after injection with AAV9-ANGPTL2 virus for
10 weeks, ANGPTL2 was most highly expressed in abdominal fat and
slightly expressed in spleen, pancreas and duodenum (Fig. 6k). Both
ANGPTL2 mRNA level in abdominal fat and serum ANGPTL2 protein
level in AAV9-ANGPTL2 group at 22 weeks of age were significantly
increased comparedwith that in AAV-NC2 group (Fig. 6l,m), indicating
that ANGPTL2 was successfully overexpressed in abdominal fat in the
AAV9-ANGPTL2 group. ANGPTL2 overexpression evidently increased
the serum reproductive hormone levels, ovarian index (OI), the num-
ber of prehierarchical follicles (SWF, LWF, SYF and LYF) and the
percentage of preovulatory follicles in 22-week-old hens, slightly up-
regulated body weight, but had no significant effect on abdominal fat
percentage and liver indexof hens at 22 and24weeks of age (Fig. 6n–q,
Supplementary Fig. 31). At 24 weeks of age, the proportion of pre-
ovulatory follicles in AAV9-ANGPTL2 group showed an increased ten-
dency compared with AAV9-NC2 group, although no statistically
significance of the difference in the number of prehierarchical follicles
(Fig. 6r, s). Ultimately, overexpression of ANGPTL2 led to 8.19%
increase in the average laying rate from 21 to 24 weeks of age (Fig. 6t).
Similarly, abdominal fat-specific endocrine factor ANGPTL2 could
promote chicken early egg production by systematically altering
reproductive hormones and ovarian development.

The inter-tissue crosstalk mechanism between abdominal fat
endocrine factor ANGPTL2 and HPO axis were investigated. The top
500 genes most significantly associated with abdominal fat ANGPTL2
targeting hypothalamus were used for response tissue function
enrichment analysis (Supplementary Data 28), and 7 response genes in
the top 6 pathways or biological processes inANGPTL2 overexpression
experiment were observed (Supplementary Table 6), and only one
gene HtrA serine peptidase 1 (HTRA1), which was involved in cellular
nitrogen compound metabolic process, was significantly induced to
upregulate expression in the hypothalamus in AAV9-ANGPTL2 group
(Supplementary Fig. 32). Interestingly, HTRA1 was also a GWASG for
egg production traits. These results indicated that abdominal fat
ANGPTL2 might achieve inter-tissue crosstalk between abdominal fat
and hypothalamus by activating HTRA1 gene and cellular nitrogen
compound metabolic process in hypothalamus of HPO axis.
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Discussion
This study is systematically excavate small-effect and pleiotropic var-
iations, genomic selective signals, multi-tissue HCGs, and multi-tissue
key endocrine factors affecting chicken egg production by integrating
multi-breed genome resequencing andmulti-tissue RNA-seq data, and
construct the intra-tissue molecular regulatory networks and explore
the inter-tissue crosstalk of endocrine factors regulating egg-laying
traits.

The egg production traits include a series of quantitative traits
such as egg number and clutch size in multiple stages, and are regu-
lated by a few large-effect variants and a large number of small-effect
variants2,3. And there is genetic pleiotropy among several different
traits or multistage traits43. These increase the difficulty for parsing
their genetic regulatory mechanisms. Although previous studies have
identified plenty of candidate SNPs associated with egg number
through univariate SNP-based GWAS2, this approach is unlikely to fully

Article https://doi.org/10.1038/s41467-024-50809-9

Nature Communications |         (2024) 15:7069 10



capture the variations in regions surrounding the genotyped markers.
In this study, in order to fully exploit the small-effect and pleiotropic
variations driving egg production traits, in addition to SNP-based
GWAS, we also comprehensively adopted haplotype-based GWAS and
CCA-based GWAS to increase detection sensitivity and statistical
power44,45. Based on these three methods and the mining small-effect
variants, the identified SNPs and haplotypes explained 35.99–64.46%
of phenotypic variances for egg production traits, which partially
explained the missing heritability29. In addition, all large-/small-effect
and pleiotropic variations significantly associatedwith egg production
traits werewidely distributed acrossmultiple chromosomes, reflecting
the micropotency of genetic regulation of egg production traits.

Both domestication and planned breeding have led to the rapid
evolution of phenotypes driven by artificial selection8, causing the
reduced genetic polymorphism or even fixed genetic allele. Com-
parative genomic analysis of different variety types, which enabled the
identification of the selective signals in the genomic regions, acceler-
ated the progress in solving the molecular basis of many complex
phenotypic traits in agricultural animals46,47. Here, by integrating the
comparative study on the genomes of three chicken variety types with
significant differences in egg production phenotypes and GWAS, we
dissected the genetic basis explaining such large differences in egg
production and identified key candidate genes affecting egg produc-
tion, which is conducive to accelerating the progress of breeding
selection for egg production phenotypes of local chickens. Specifi-
cally, we confirmed that CAMK2D is a key selected gene involved in the
positive regulation of egg production in chickens by analyzing its
genomic architecture and in vitro and in vivo validation.

Egg-laying regulation involvesmany genes acrossmultiple tissues,
including HPG axis-related tissues, liver, and abdominal fat15,16,48.
Recent studies have shown that some candidate causal genes asso-
ciated with phenotypic traits based on genomic identification have
tissue bias13 or tissue specificity49. Especially for complex traits deter-
mined byminor effect genes, the efficacy of causal genes that could be
detected based on a single tissue was greatly reduced49. By combining
candidate genes identified at the genome level with multi-tissue tran-
scriptome profiles, we excavated theHCGs of hypothalamus, pituitary,
ovary, liver, and abdominal fat, which are closely related to egg pro-
duction, and found that these genes were mainly concentrated in
ovarian, liver and abdominal fat tissues, which further indicated that
the role of these peripheral tissues in the regulation of egg production
should not be ignored.

We further verified the regulatory functions of HCGs in the
hypothalamic and ovarian networks in vitro. Previous studies have
shown that TFPI2, as an important serine protease inhibitor in the
extracellularmatrix, plays an important role in the development of the
central nervous system in fish, and fetal loss of TFPI2 can lead to ser-
ious central nervous system defects50, indicating that TFPI2 could be
involved in the development and regulation of nerve cells. NPVF
neurons, as a central regulator of bird reproduction, are located on the

hypothalamic paraventricular nucleus, secreting NPVF, and their nerve
fibers can extend to median eminence to inhibit the release and
secretion of GnRH by acting on GnRH neurons in the hypothalamus51.
In our study, TFPI2 overexpression could reduce NPVF expression and
promote the GnRH secretion, but hadno effect on GnRH expression in
chicken primary hypothalamic neuron cells. Therefore, we speculated
that TFPI2 might partially relieve NPVF inhibition on GnRH release by
decreasing NPVF expression, thus promoting the GnRH secretion.
Meanwhile, network adjacent genes including SLC38A4, ASPG, and
FKBP5, which play an important role in the production and release of
excitatory neurotransmitters and synaptic plasticity, showed some
compensatory functionafterTFPI2 interference52.OSTNwas previously
identified as an osteoblast-derived secreted protein and promoted
chondrocyte maturation and bone formation in mammals53. However,
its function in poultry has not been reported. In this study, in vitro test
confirmed that OSTN may promote follicle growth and maturation by
promoting granulosa cell proliferation and the synthesis of sex steroid
hormones (PROG and E2). Previous studies have shown that granular
layer thickness and follicle PROG levels increase significantly in the
early stages of follicle selection in poultry54, and the selected follicles
eventually enter the hierarchy to form eggs, supporting the explana-
tion thatOSTN is involved in the positive regulation of egg production.
In addition, network adjacent genes including CCDC80, PTRF, and
FBN1, which played important regulatory functions in lipid synthesis,
angiogenesis, and glycolysis55, showed synchronous changes with
OSTN and participated in the functional regulation of ovarian granu-
losa cells in different forms.

Endocrine factors perform the function of inter-tissue signal
transmission. In addition to the classical reproductive endocrine fac-
tors such as hypothalamic GnRH, NPVF, VIP, and pituitary FSH, LH,
PRL, a prominent instance was communication between the adipose
tissue and the hypothalamus. Moreover, the perturbations of adipo-
kine (e.g., leptin and adiponectin) in adipose tissue could affect the
reproductive signal and feeding signal in the hypothalamus17. QENIE
analysis can systematically establish inter-tissue communication of
endocrine factors19. Cao et al. 56

first used the method to reveal the
mechanism of liver endocrine factor FXI regulating liver-heart tissue
communication to protect against heart failure56. Here, QENIE analysis
was used to identify key endocrine factors secreted by hypothalamus,
liver and abdominal fat that affect egg production. Our study revealed
some endocrine factors potentially involved in the regulation of egg
production and established the peripheral tissue-HPO axis tissues
crosstalk mechanism mediated by liver-derived APOA4 or abdominal
fat-derived ANGPTL2 promoting early egg production. APOA4 was
identified as a key endocrine factor secreted from liver, and liver-
specific APOA4 overexpression could increase egg production in hens.
Inter-tissue communication verification suggested that APOA4 could
realize liver-HPO axis communication by activating hypothalamic
axon growth and synaptic remodeling related pathways (Focal adhe-
sion and ECM-receptor interaction)57, pituitary seasonal reproductive

Fig. 6 | Peripheral tissue-HPO axis crosstalk improved early egg production in
Gushi chicken. aTissue expression characteristics ofAPOA4 in AAV9-APOA4group
of 22-week-old Gushi hens (n = 3). b, c Liver-specific APOA4 overexpression sig-
nificantly increased its mRNA level in liver and its protein levels in serum at
22weeks of age (n = 9 for each group in (b);n = 10 for each group in (c)).d–g Effects
of liver-specific APOA4 overexpression on reproductive hormone levels, ovarian
morphology, number of prehierarchical follicles and the percentage of pre-
ovulatory follicles at 22 weeks of age (n = 10 for each group in (d, f)). h, i Effects of
liver-specific APOA4 overexpression on number of prehierarchical follicles and the
percentage of preovulatory follicles at 24 weeks of age (n = 11 for AAV9-NC1, and
n = 10 for AAV9-APOA4 in (h)). j Liver-specific APOA4 overexpression affected egg
number and average egg-laying rate from21 to 24weeksof age.kTissue expression
characteristics of ANGPTL2 in AAV9-ANGPTL2 group of 22-week-old Gushi hens

(n = 3). l,m Abdominal fat-specific ANGPTL2 overexpression significantly increased
its mRNA level in liver and its protein levels in serum at 22 weeks of age (n = 7 for
AAV9-NC2, and n = 9 for AAV9-ANGPTL2). n–q Effects of abdominal fat-specific
ANGPTL2 overexpression on reproductive hormone levels, ovarian morphology,
number of prehierarchical follicles, and the percentage of preovulatory follicles at
22 weeks of age (n = 7 for AAV9-NC2, and n = 9 for AAV9-ANGPTL2 in (n, p)).
r, s Effects of abdominal fat-specific ANGPTL2 overexpression on number of pre-
hierarchical follicles and the percentage of preovulatory follicles at 24weeks of age
(n = 8 for AAV9-NC2, and n = 13 for AAV9-ANGPTL2 in (r)). t abdominal fat-specific
ANGPTL2 overexpression affected egg number and average egg-laying rate from 21
to 24 weeks of age. Data are presented as the mean ± SEM, and the indicated P
values (*P <0.05, **P <0.01, and ***P <0.001) are based on two-tailed unpaired
t-test. Source data are provided as a Source Data file.
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regulation signaling pathway (Thyroid hormone signaling pathway)58,
and ovary granulosa cell migration, Ca2+ homeostasis and follicle
maturation related pathways (Adrenergic signaling in cardiomyocytes
and small molecule metabolic process)59–61. ANGPTL2, belongs to the
angiopoietin-like family, was identified as a key adipokine secreted by
abdominal fat. Abdominal fat-specific overexpression of ANGPTL2
could increase egg production in hens. Inter-tissue communication
verification suggested that ANGPTL2 could realize abdominal fat-HPO
axis communication by promoting the up-regulated expression of
HTRA1 of cellular nitrogen compound metabolic process in hypotha-
lamus to stimulate neurogenesis and neurite growth62.

Systematically, in combination with the functional verification of
the above identified HCGs and key endocrine factors in vivo and
in vitro, a proposed regulatory mechanism promoting chicken egg-

laying performance through intra-tissue and inter-tissue coordination
is summarized in Fig. 7. In the regulatory system, three genes TFPI2,
CAMK2D andOSTN, as representatives of theHCGs associatedwith egg
production traits and selected in domestication and breeding, sepa-
rately promoted the GnRH secretion in hypothalamic neuron cells, the
FSHβ and LHβ secretion in pituitary cells, and granulosa cell pro-
liferation and the synthesis of sex steroid hormones in ovarian gran-
ulosa cells via intra-tissue gene network interconnection. Additionally,
as representatives of tissue-specific key endocrine factors, a hepato-
kine APOA4 and an adipokine ANGPTL2 could increase chicken egg
production by inter-tissue communication with HPO axis.

In brief, all our efforts have aggregated chicken laying-related
variants, superior genes and key endocrine factors. This provide a
valuable resource pool for more-accurate identification of causative

Fig. 7 | Proposedmechanismof hub candidate genes and key endocrine factors
regulating chicken egg-laying phenotypes. GnRH represents gonadotropin-
releasing hormone; GnIH gonadotropin-inhibiting hormone; FSH represents
follicle-stimulating hormone; LH represents luteinizing hormone; E2 represents

estrogen; and PROG represents progesterone. The red up arrow indicates up-
regulated expression, and the blue down arrow indicates down-regulated
expression.
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variants and in-depth functional parse of egg-laying regulation at
multiple levels. Construction of multi-tissue hub genetic networks and
cross-tissue communication of endocrine factors broaden the horizon
of research on the regulation of egg production in poultry.

Methods
Ethics statement
All animal experimental protocols were approved by the Institutional
Animal Care and Use Committee of Henan Agricultural University
(protocol number 11-0085). The methods were carried out in accor-
dance with the approved guidelines.

Animals, phenotype, and sample collection
A total of 900 female individuals of Gushi chickens from the 12th
generation were used for GWAS of egg production traits. The
population consisted of two batches of chickens that were raised
until 12 weeks of age and transferred to single cages in the same
house. All individuals were raised according to the normal manage-
ment standards of Gushi chickens. When reached age at first egg, all
hens were recorded daily for individual egg number until 43 weeks of
age. According to individual laying records, we classified the egg
production traits into three categories, namely, egg number (EN),
ACS, and maximum clutch size (MCS). A clutch was defined as the
number of eggs laid on consecutive days without a break7. MCS
represents maximum number of eggs in a clutch, and ACS represents
average number of eggs in a clutch. According to the laying curve of
Gushi chickens, we divided the whole laying period into three stages
(Supplementary Fig. 33) and counted the EN and ACS in each indi-
vidual phase: the early laying stage with rapid increase in egg pro-
duction (the laying rate <70% from 21 to 25 weeks of age) (EN21-25w,
ACS21-25w); the peak laying stage (the laying rate > 70% lasting from
26 to 30 weeks of age) (EN26-30w, ACS26-30w); the decline laying
stage from 31 to 43 weeks of age (EN31-43w, ACS31-43w) including
the phase with 65–70% laying rate (EN31-35w, ACS31-35w) and the
phase whose laying rate is lower than 65% (EN36-43w, ACS36-43w).
We also calculated the total egg number (ENT) and the total average
clutch size (ACST) from 21 to 43 weeks of age. Blood samples from
900 individuals at 43 weeks of age were collected by wing vein for
genomic DNA extraction.

The genome resequencing data of 90 chickens from three dif-
ferent egg-laying types, including 50 native chicken breeds (Gushi
(GS), Lushi (LS), Xichuan Black Bone (XCBB), Zhengyang San Huang
(ZYSH) andHenanGamecock (HNG) chicken)22, 20wild ancestors (Red
jungle fowl, RJF)1,21 and 20 layer breeds (White Leghorns (WL) and
Rhode Island Red (RIR) chicken)1 were used for comparative genome
analysis. Among them, the data of native chickens were retrieved from
our previous resequencing data22, and the data of RJF and layer breeds
were downloaded from the NCBI database1,21. The detailed description
information was shown in Supplementary Data 7.

GS and LS chickens are the two dual-purpose egg and meat-type
native breeds with similar annual egg number of 150–180 (NLPGRC
2011). The female birds of both breeds were raised in single cages with
the recommended conditions34 after 12 weeks of age. Briefly, a com-
mon corn-soybean diet containing 12.75MJ kg–1 metabolic energy and
15.60% crude protein was provided, and the water were available ad
libitum. HL chickens from16 to 35weeks of agewere rearedwith thead
libitum access to water and the phased standard commercial diet of
Hy-Line Brown containing 11.62–13.80MJ kg–1 metabolic energy and
16.50–17.00% crude protein (www.hyline.com). Healthy female indi-
viduals of 30-week-old GS chicken (n = 8), LS chicken (n = 8) and HL
chicken (n = 8) were randomly selected and slaughtered humanely.
Twelve type of tissues, including hypothalamus, pituitary, ovary
(without follicles), cerebrum, liver, abdominal fat, pectoralis, kidney,
duodenum, proventriculus, heart, and shell gland, were collected for
gene expression profile analysis.

According to the individual laying records of 764 Gushi chick-
ens from onset of laying eggs to 43 weeks of age in the 14th gen-
eration, we defined individuals whose total egg number at 20 weeks
of age (EN20w) was in the top 5% of population as the 20-week-old
high-yield group (GS20wH), and individuals whose EN20w was 0 as
the 20-week-old low-yield group (GS20wL). Andwe assigned the top
10% of population with egg number as the high-yield group, and the
bottom 20% of population as the low-yield group at at 28, 36, and
43 weeks of age, respectively (Supplementary Fig. 9). Specifically,
GS20wH group (average total EN20w with 8.92 ± 5.58) with 12
healthy individuals and GS20wL group (EN20w with 0) with 12
healthy individuals, GS28wH group (average total EN28w with
42.73 ± 4.90) with 11 healthy individuals and GS28wL group (average
total EN28w with 7.62 ± 4.89) with 12 healthy individuals, GS36wH
group (average total EN36w with 82.77 ± 9.96) with 13 healthy
individuals and GS36wL group (average total EN36w with
40.42 ± 8.20) with 12 healthy individuals, GS43wH group (average
total EN43w with 123.25 ± 13.79) with 12 healthy individuals and
GS43wL group (average total EN43w with 69.50 ± 11.93) with 14
healthy individuals (Supplementary Data 15) were screened and
slaughtered humanely. And serum samples were collected, carcass
traits were determined and different hierarchical ovarian follicles
number were counted subsequently. Tissue samples from hypo-
thalamus, pituitary, ovary (without follicles), liver, and abdominal
fat were collected and snap frozen in liquid nitrogen and stored at
−80 °C for subsequent transcriptome sequencing and gene
expression verification. The most caudal part of the right liver lobe
(1 × 1 × 1 cm) were excised and then immersed in 4% formaldehyde
tissue fixating solution for hematoxylin and eosin (H&E) staining of
tissue sections to determine liver lipid content (LLC).

DNA extraction and genome resequencing
Blood genomic DNA was extracted using TIANamp Genomic DNA Kit
according to themanufacturer’s instructions (Tiangen, Beijing, China).
Genomic DNA fromeach sample of 900 individuals (>0.5μg) was used
to construct a paired-end sequencing library with a random DNA
fragment length of ~150bp. The qualified library was re-sequenced by
BGISEQ sequencing platform.

Sequence read mapping
For the resequencing data of 900 GS chickens, after the raw reads
were filtered, each sample ended up with ~6.09Gb of high-quality
clean bases, with an average depth of 5.75× coverage. For the rese-
quencing data of 90 chickens from three different egg-laying types,
each sample ended up with ~14.65 Gb of high-quality clean bases,
with an average depth of 13.82× coverage. These clean reads were
mapped onto the chicken reference genome (GRCg6a) with the
Burrows-Wheeler Aligner (BWA v.0.7.17r1188)63. Mapping results
were sorted and de-duplicated using SAMtools v.1.3.1, and were
reordered and calibrated for the highest quality mapping reads using
GATK v3.8.

SNP calling, quality control and annotation
BaseVar-STITCH process was used for identifying polymorphic sites
and imputing genotypes of the high-quality mapping data from 900
Gushi chickens64. Subsequently, PLINK v1.90 package was imple-
mented to control the quality of sample call rate (>97%), and to filter
out the low quality of SNPs including SNP call rate <95%, minor allele
frequency (MAF) < 0.01 and Hardy-Weinberg equilibrium P < 1 × 10-6.
Finally, a total of 888 individuals and 13,467,604 SNPs located on
autosomeswerequalified for the following analyses.UnifiedGenotyper
of GATK v3.8 software was implemented to calling SNPs of the high-
quality mapping data from 90 different breeds of chickens. The
obtained SNPs were filtered by VariantFiltration of GATK v3.8 with
options “QD< 4.0||FS > 60.0||MQ<40.0||GQ < 20”. The remaining
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SNPs with genotype missing rate <30% were imputed using the Beagle
v5.0 procedure. Finally, a total of 21,984,699 SNPs with MAF >0.05
were obtained using VCFtools v0.1.16. SNPs were annotated by SNPEff
v 4.1 program.

SNP-based GWAS
For the 900 GS chickens, all qualified SNPs were pruned by the option
of --indep-pairwise 50 10 0.2 to obtain a total of 991,830 independent
SNPs. Association analyses of egg production traits were performed
using the mixed linear model (MLM) in the GCTA v1.92.265. The
population stratification effect was corrected by adding the first three
principal components (PCs) derived from the whole-genome SNPs as
covariates, and the batch effect was corrected by adding the birth
batch as a covariable. Based on independent SNPs, we defined SNPs as
a large effect SNP and a small effect SNP with a P < 1 × 10-6 (1/991,830)
and P < 1 × 10-4, respectively. The Manhattan and quantile-quantile
plots of egg production traits were implemented using the “CMplot”
package in the R.

Haplotype-based GWAS
Haplotype phasing and imputation were performed using Beagle v5.0
with the parameters: beagle.jar gt=file.vcf out=file.phased gp=true. For
phased data, a total of 7065,827 SNPs was obtained by using --indep-
pairwise 50 10 0.98, which filtered out completely linked SNPs. The
whole-genome was divided into 1413,153 blocks of five successive
SNPs. The haplotype-basedGWASwasperformedbasedonMLMusing
R package lme4qtl v0.2.266. Haplotype combinations were included as
fixed effect in the model, while the random polygenic effect was cap-
tured by the genetic relationship matrix calculated using all haplo-
types. Statistical significance for eachhaplotype blockwas accessed by
ANOVA against the null model without the haplotype block to test for
association.

CCA-based GWAS
The CCA-based GWAS is a multivariate association analysis approach
that simultaneously tests the association between a single SNP and
multiplegenetically relatedphenotypes.Themethod is thus capable of
detecting potential pleiotropic genes45. The CCA-based GWAS was
carried out by two approaches, i.e., combining same trait across dif-
ferent times, or combining all traits in a single time.We first computed
the correlation between a SNP and multiple phenotypes, and then
performed a Chi-square test on the correlation to access the sig-
nificance of each SNP. The CCA was calculated by cancor function in R
package stats.

Genetic parameter and variant effect
The SNP-based heritabilities and pairwise genetic correlations of egg
production traits were estimated using a restricted maximum like-
lihood (REML) approach implemented in GCTA v1.92.2. The procedure
was also used to calculate the proportion of phenotypic variance
explained by the candidate SNPs and haplotypes.

Population genetics analysis
For the 90 chickens from three different egg-laying types, an
individual-based NJ tree was constructed for all the samples based on
the Reynolds genetic distances with 1000 bootstraps using PHYLIP
v.3.69, and visualized using MEGA v10.0. The whole-genome SNPs of
all 90 individualswere further prunedby the option of --indep-pairwise
50 10 0.2 by PLINK v1.90. PCA of the pruned SNPs was performed
based on the genetic relationship matrix calculating by GCTA v1.92.2.
The pruned SNPswere used for LDdecay analysis of different varieties.
The parameter R2 for LD was calculated for pairwise SNPs using
PopLDdecay v3.41. The average R2 values were calculated for each
length of distance. The LD decay plot was depicted against the length
of distance using the R script.

Detection of selective sweeps
After filtering the sex chromosome, we generated a final set of
10054,021 SNPs located on autosomes for detecting the selective
sweeps. Two approaches including FST and the comparison of
nucleotide diversity (π) ratios (log2(π-ratio)) were used for performing
tests of selective sweeps during domestication and breeding of native
chicken breeds and layer breeds. FST approach implemented in
vcftools v.0.1.16 and was used to test the degree of population genetic
differentiation, while log2(π-ratio) was also calculated in vcftools
v.0.1.16 and was used to test the degree of nucleotide diversity of a
genomic region8. Values of FST and π were calculated with a 40 kb
sliding window and a 10 kb sliding step. FST values were changed using
Z-transform(ZFST). In each comparison, the genomic regions in the top
5% ZFST values and log2(π-ratio) values across the whole-genomewere
considered to be the candidate selective genomic region.

Measurements of serum reproductive hormone concentrations
The concentrations of serum reproductive hormones including FSH,
LH, E2, PROG, and PRL in all the above slaughtered high- and low-yield
GS chickens at 20, 28, 36, and 43 weeks of age weremeasured by using
the corresponding chicken Enzyme Linked Immunosorbent Assay Kit
(Jiangsu Meimian industrial Inc., China), respectively, according to the
manufacturer’s instructions. Three technological duplications were
performed for each reproductive hormone in each serum sample.

Multi-tissue transcriptome profiling
A total of 80 samples from five tissue types (hypothalamus, pituitary,
ovary, liver and abdominal fat) of 43-week-old Gushi hens from high-
(GS43wH,n = 8) and low-yield group (GS43wL,n = 8)were collected for
RNA-Seq analysis. The total RNA from all 80 tissues were extracted
using Trizol RNA Reagent (Takara, Dalian, China). A total of 78 RNA
samples (14 from hypothalamus and 16 from each of the other 4 tis-
sues) were qualified for the construction of cDNA libraries and
sequenced using the Illumina Novaseq 6000 System (Illumina, San
Diego, CA) to generate 150-bp paired-end reads. Clean reads were
aligned to the chicken galGal 6 reference genome using HISAT2.
Transcript abundance was calculated using RSEM and normalized via
FPKM method.

WGCNA
To identify genes sets responsible for egg number and serum repro-
ductive hormones in five tissues, a co-expression network analysis was
performed using the WGCNA package67 in R. The network was con-
structed using topology overlapmatrix, module detection, and similar
modulemerging functions. Theminimalmodule sizewas set to 50. Egg
production traits including ENT, EN39-43w, FSH, LH, E2, and PROG
were used as trait files to evaluate module-trait relationships. Sig-
nificant correlations between modules and traits were defined as
P <0.05, where * represents P <0.05, ** for P <0.01, and *** for
P <0.001. For each of the significantly correlated modules, the genes
with gene significance (GS, |GS| > 0.5, P <0.05) and module member-
ship (MM, |MM| > 0.5, P <0.05) were identified as modules hub
genes (MHGs).

Differential expression analysis
DESeq2 were used for differential expression analysis between high-
and low-yield group. Benjamini-Hochberg method was used to calcu-
late the adjusted P value (FDR) for multiple testing corrections. The
DEGs were identified according to the criteria of FPKM ≥ 1, |fold
change| ≥ 1.5 and q <0.05.

Molecular network construction and functional enrichment of
module hub genes
By combining the gene correlation weight, gene connectivity, whether
a gene was a differential MHG, and whether a gene is a HCG or a KCG,

Article https://doi.org/10.1038/s41467-024-50809-9

Nature Communications |         (2024) 15:7069 14

https://cran.r-project.org/package=CMplot


we constructed molecular co-expression regulatory networks of hub
genes associated with egg-laying phenotypes based on the most sig-
nificant positive and negative correlation modules in the five tissue
types. Cytoscape was used for visualization of molecular network
construction. The putative functions of module hub genes were
investigated by gene ontology (GO) enrichment analysis with R pack-
age clusterProfiler at a significance level of P value < 0.05.

Plasmid construction and siRNA synthesis for in vitro validation
Gene overexpression plasmids were constructed by homologous
recombination method, TFPI2 and OSTN were cloned into the
pcDNA3.1-EGFP (Invitrogen, Carlsbad, CA) vector andpcDNA3.1–3 ×flag
vector (Invitrogen, Carlsbad, CA), respectively. The siRNA oligonu-
cleotides specifically against chicken CAMK2D, TFPI2 and OSTN (si-
CAMK2D, si-TFPI2 and si-OSTN), respectively and a nonspecific duplex
(si-NC, negative control) were synthesized from GenePharma Co., Ltd.
(Shanghai, China).

Chicken pituitary cell culture, induction and transfection
The pituitaries isolated from 17-day-old chicken embryos were washed
for three timeswith PBScontaining 1mg/ml bovine serumalbumin and
1% penicillin/streptomycin, and cut into pieces. The digested cell sus-
pension with 1mg/ml collagenase type II (Solarbio, Beijing, China) was
filtered using 200-mesh screens, then centrifuged at 1500 rpm for
8min. The re-suspended pituitary cells were cultured at a density of
5×105 cells per well in DMEM (Gibco, Gaithersburg, MD) supplemented
with 5% fetal bovine serum (FBS) (Gibco,Gaithersburg,MD), 500μg/ml
transferrin, 500μg/ml bovine insulin and 1% penicillin/streptomycin in
a 24-well plate (NUNC) at 37 °C with 5% CO2.

After 24 h incubation at 37 °C, the medium was replaced by
500 μl DMEM containing 0 nM, 25 nM, and 50 nM GnRH agonist
(Alarelin acetate) (MCE) and incubated for 12 h or 24 h. Each treat-
ment contained 4 biological replicates. After treatment, cell super-
natant was collected for determination of FSHβ and LHβ hormone
levels, and cell precipitation was collected for RNA extraction to
determine gene expression. si-CAMK2D and si-NC were transfected
into pituitary cells after 12 h incubation with 25 nM GnRH agonist.
After 24 h of treatment, cells were collected for testing the CAMK2D
interference efficiency and the mRNA levels of genes involved in
hormone synthesis.

Chicken primary hypothalamic neuron cell culture and
transfection
The hypothalamuses isolated from 17-day-old chicken embryos were
shredded, digested with 1mg/ml collagenase type II, and filtered using
200-, 500-mesh sieves, respectively. The filtered cell suspension was
centrifuged for three times at 150× g for 7min, then re-suspended by
DMEM supplemented with 15% FBS, 1% L-glutamine (Solarbio, Beijing,
China) and 1% penicillin/streptomycin. The re-suspended cells were
cultured at a density of 1 × 106 cells per well in a 5% polylysine (Sigma)
coated 12-well plate (NUNC) at 37 °C with 5% CO2. After 36h incuba-
tion, the medium was replaced by Neurobasal medium (Gibco, Gai-
thersburg, MD) supplemented with 1% L-glutamine, 2% B27 (Gibco,
Gaithersburg, MD), 1% penicillin/streptomycin and 5% β-D-cytarabine
(Solarbio, Beijing, China), then replaced by Neurobasal medium with-
out β-D-cytarabine after 24 h incubation. Subsequently, over-
expression and knockdown experiments of the TFPI2 were performed
using the transfection reagent Lipofectamine 3000 (Invitrogen,
Carlsbad, CA) following the manufacturer’s instruction, respectively.

Chicken granulosa cell culture and transfection
The stratum granulosum of the 6–12mm follicles separated from 30-
week-old hens was cut into pieces. The granular layer suspension was
digested with 1mg/ml collagenase type II after which it was filtered
through a 200-mesh sieve, then resuspended and plated with DMEM

(VivaCell, Shanghai, China) containing 5% FBS and 1% penicillin/strep-
tomycin. The granulosa cells were incubated at 37 °C with 5% CO2.
After 12–14 h incubation, overexpression and knockdown experiments
of the OSTN gene were performed using the transfection reagent
LipofectamineLTX (Invitrogen, Carlsbad, CA).

CCK-8 assay
Granulosa cells cultured in 96-well plates were transfected with the
overexpressed plasmids (pcDNA3.1-OSTN and pcDNA3.1-EGFP) and
siRNA oligonucleotides (si-OSTN and si-NC), respectively. Cell pro-
liferation was evaluated at 12, 24, and 36 h after transfection using cell
counting kit-8 (CCK-8) reagent (Dojindo, Kumamoto, Japan) according
to the instruction.

Real-time quantitative PCR, western blot, and
immunofluorescence
The mRNA expression changes of genes in vivo or in vitro were
examined using real-time quantitative PCR (qRT-PCR). The specific
primers used for qRT-PCR were designed using NCBI Primer-BLAST
tool (Supplementary Tables 7–9). qRT-PCR reaction was implemented
in LightCycler 96 Instrument (Roche Applied Science, IN) with
2 × SYBR Premix Ex TaqTM II (TaKaRa). Each sample was tested in tri-
plicate. The relative mRNA level of gene was calculated using the 2-ΔΔCt

method and normalized by the internal control GAPDH gene.
Protein was extracted from the transfected cells using RIPA Lysis

buffer (Beyotime, Shanghai, China) and was quantified by BCA protein
quantification kit (Thermo Fisher, Shanghai, China). The western blot
(WB) was implemented as follows: The denatured protein (50μg) was
separated on a 10% SDS-PAGE gel and transferred to a methanol-
activated polyvinylidene difluoride (PVDF) membrane (Millipore,
Danvers, MA). The membrane was then blocked with 5% nonfat milk
and incubated overnight at 4 °C with the primary antibodies of rabbit
anti-TFPI2 (1:500; chicken peptide sequence:CAALAPRGLTEKQR,
Homemade antibody)68, Polyclonal anti-CYP11A1 (1:2000, 13363-1-AP,
Proteintech, Wuhan, China), rabbit anti-CYP19A1 (1:1000, A12684,
ABclonal, Wuhan, China), rabbit anti-STAR (1:1000, A16432, ABclonal,
Wuhan, China) and mouse anti-GAPDH (1:50000, 60004-1-Ig, Pro-
teintech, Wuhan, China), respectively. Then, the membrane was incu-
bated with the secondary antibody (1:50000, 5220-0336, SeraCare,
Beijing, China) for 1 h at room temperature. The signal of WB was
detected with an enhanced chemiluminescence system (Odyssey Fc,
LI-COR, Lincoln, NE). The gray values of the blot signals were counted
using ImageJ software (NIH, Bethesda, Maryland, USA). The protein
level of genewas normalized to the loading control GAPDH. Polyclonal
antibodies against GnRH (1:500, PAA843Ga01, Cloud-clone, Wuhan,
China) and FSHR (1:200, A3172, ABclonal, Wuhan, China) were used to
identify chicken primary hypothalamic neuron cells and chicken
ovarian granulosa cells via immunofluorescence assay. The immuno-
fluorescence images were captured by using fluorescence microscope
(Olympus, Melville, NY, USA).

QENIE analysis
According to the implementation method of QENIE19, we first con-
structed cross-tissue biweight midcorrelation matrices between
endocrine factors of origin tissue and genes of target tissue, and cal-
culated the correlation coefficients (bicor) and Student’s correlation P
value between genes. The -ln(P) of endocrine genes in each tissue of
origin was further calculated and corrected by the number of tran-
scripts in the target tissue. We further assessed the cross-tissue pre-
dictive strength (Ssec) of each origin endocrine factors by computing
the sumof the –ln(P) for each origin endocrine factors across all target
tissue transcripts19. In addition, we retained the top 500 genes in the
target tissue that were most significantly associated with each origin
endocrine factor for interrogating cross-tissue enrichment of biologi-
cal function.
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Tissue-specific endocrine factor overexpression test in chickens
Liver-specific overexpression recombinant AAV9 vector of chicken
APOA4 (AAV9-TBG-APOA4-ZsGreen) and abdominal fat-specific over-
expression recombinant AAV9 vector (AAV9-FABP4-ANGPTL2-
ZsGreen) were constructed, packaged, and purified by Hanbio Bio-
technology (Shanghai, China). The titer of the purified virus was
1 × 1012 vg/ml. A total of 120 healthy 12-week-old Gushi pullets with
similar body weight were selected for the experiment, with 30 indivi-
duals in each group.

AAV9-TBG-ZsGreen (AAV9-NC1) and AAV9-TBG-APOA4-ZsGreen
(AAV9-APOA4) were used to test for liver-specific APOA4 over-
expression, while AAV9-FABP4-ZsGreen (AAV9-NC2) and AAV9-FABP4-
ANGPTL2-ZsGreen (AAV9-ANGPTL2) were used to test for abdominal
fat-specific ANGPTL2 overexpression. A total of 200μl virus was
injected into each individual with an average weight of 800 g by in situ
liver injection and intraperitoneal injection, respectively. After injec-
tion, Gushi pullets were fed normally until 24 weeks of age, during
which the body weight and egg production of each group were esti-
mated. The experimental population were slaughtered humanely at 22
and 24 weeks of age, respectively, in which 10 individuals were
slaughtered in each group at 22-week of age and the remaining indi-
viduals in each group at 24 weeks of age. The serum samples were
collected, carcass traits including AFP, LI, and OI were measured, the
number of prehierarchical follicles and the proportion of preovulatory
follicles were counted. Additionally, 11 types of tissues, including
hypothalamus, pituitary, ovary, liver, abdominal fat, kidney, duode-
num, pectoralis, leg muscle, pancreas, and spleen, were rapidly col-
lected and stored.

Detecting the expression of APOA4, ANGPTL2, and their
response genes
Total RNA was extracted from 11 tissues of 22-week-old AAV9-APOA4
group and AAV9-ANGPTL2 group for detecting tissue specific expres-
sions of APOA4 and ANGPTL2 by qRT-PCR. Total RNA was extracted
from liver tissues of AAV9-NC1 and AAV9-APOA4 groups, and abdom-
inal fat tissues of AAV9-NC2 and AAV9-ANGPTL2 groups at 22 weeks of
age for detecting the expression differences of liver APOA4 and
abdominal fat ANGPTL2 between the two groups. The serum protein
levels of endocrine factors between the two groups were determined
by chicken APOA4 and ANGPTL2 ELISA kit (Jiangsu Meimian Industrial
Inc, Jiangsu, China), respectively. Total RNA from hypothalamus,
pituitary, ovary, liver, abdominal fat, duodenum, and kidney of the four
groups at 22 weeks of age were use for detecting the tissue specific
differential expression of liver APOA4 targeted-response genes in HPO
axis and abdominal fat ANGPTL2 targeted-response genes in hypotha-
lamus. Primer information were list in Supplementary Table 9.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The resequenced raw data from 888 Gushi hens were deposited in
the Genome Sequence Archive (GSA) with accession number
PRJCA021392. The RNA-seq raw data of 5 tissue types were deposited
inNCBI Sequence ReadArchivewith accession number PRJNA893445
andPRJNA953784. All other data supporting thefindings of this study
are available within the article and its Supplementary Information
files. A reporting summary for this Article is available as a Supple-
mentary Information file. Source data are provided with this paper.
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