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In this paper, we consider the following generalized quasilinear Schrödinger equation with nonlocal term −div ðg2ðuÞ∇uÞ + gðuÞ
g′ðuÞj∇uj2 +VðxÞu = λ½jxj−μ ∗ jujp�jujp−2u, x ∈ℝN , where N ≥ 3, g : ℝ→ℝ+ is a C1 even function, gð0Þ = 1, g′ðsÞ ≥ 0 is for all s
≥ 0, lim

∣s∣→+∞
gðsÞ/jsjα−1 ≔ β > 0 is for some α > 1, and ðα − 1ÞgðsÞ ≥ g′ðsÞs is for all s ≥ 0, 2α ≤ p ≤ 2αðN − μÞ/N − 2, and 0 < μ <N .

We prove that the equation admits a solution by using a constrained minimization argument.

1. Introduction and Preliminaries

The main purpose of this paper is to investigate the existence
of solutions for the following generalized quasilinear
Schrödinger equation with nonlocal term

−div g2 uð Þ∇uÀ Á
+ g uð Þg′ uð Þ ∇uj j2 + V xð Þu = λ xj j−μ ∗ uj jpÂ Ã

uj jp−2u, x ∈ℝN ,

ð1Þ

where N ≥ 3, g : ℝ→ℝ+ is a C1 even function, gð0Þ = 1,
g′ðsÞ ≥ 0 is for all s ≥ 0, lim

∣s∣→+∞
gðsÞ/jsjα−1 ≔ β > 0 is for

some α > 1, and ðα − 1ÞgðsÞ ≥ g′ðsÞs is for all s ≥ 0, 2α ≤ p
≤ 2αðN − μÞ/N − 2, and 0 < μ <N .

When gðuÞ = 1, (1) boils down to the socalled nonlinear
Choquard or Choquard-Pekar equation

−Δu +V xð Þu = λ xj j−μ ∗ uj jpÂ Ã
uj jp−2u, x ∈ℝN : ð2Þ

Such like equation has several physical origins. The
problem

−Δu + u = xj j−1 ∗ uj j2Â Ã
u, x ∈ℝ3 ð3Þ

appeared at least as early as in 1954, in a work by Pekar
describing the quantum mechanics of a polaron at rest [1].
In 1976, Choquard used (3) to describe an electron trapped
in its own hole and in a certain approximation to Hartree-
Fock theory of one component plasma [2]. In 1996, Penrose
proposed (3) as a model of self-gravitating matter, in a pro-
gram in which quantum state reduction is understood as a
gravitational phenomenon [3]. In this context, equation of
type (3) is usually called the nonlinear Schrödinger-Newton
equation. The first investigations for existence and symmetry
of the solutions to (3) go back to the works of Lieb [2] and
Lions [4]. In [2], by using symmetric decreasing rearrange-
ment inequalities, Lieb proved that the ground state solution
of equation (3) is radial and unique up to translations. Lions
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[4] showed the existence of a sequence of radially symmetric
solutions. Since then, many efforts have been made to study
the existence of nontrivial solutions for nonlinear Choquard
equations. Wei and Winter [5] showed that the ground state
solution is nondegenerate. Ma and Zhao [6] considered the
generalized Choquard equation

−Δu + u = xj j−μ ∗ uj jq½ � uj jq−2u q ≥ 2ð Þ ð4Þ

and proved that every positive solution of it is radially sym-
metric and monotone decreasing about some fixed point,
under the assumption that a certain set of real numbers,
defined in terms of N , μ, and q, is nonempty. Under the same
assumption, Cingolani, Clapp, and Secchi [7] gave some exis-
tence and multiplicity results in the electromagnetic case and
established the regularity and some decay asymptotically at
infinity of the ground states. In [8], Moroz and Van Schaftin-
gen eliminated this restriction and showed the regularity,
positivity, and radial symmetry of the ground states for the
optimal range of parameters and derived decay asymptoti-
cally at infinity for them as well. Moreover, they [9] also
obtained a similar conclusion under the assumption of
Berestycki-Lions type nonlinearity. We point out that the
existence, multiplicity, and concentration of such like equa-
tion have been established by many authors. We refer the
readers to [10, 11] for the existence of sign-changing solu-
tions, [5, 12] for the existence and concentration behavior
of the semiclassical solutions and [13] for the critical nonlo-
cal part with respect to the Hardy-Littlewood-Sobolev
inequality. For more details associated with the Choquard
equation, please refer to [14–16] and the references therein.

In the past, even the research on the existence of solitary
wave solutions for the Schrödinger equation with local term

−div g2 uð Þ∇uÀ Á
+ g uð Þg′ uð Þ ∇uj j2 +V xð Þu = f x, uð Þ, x ∈ℝN

ð5Þ

is for some given special function gð·Þ, see [17–19]. However,
related to the nonlocal equation (1), as far as we know, there
is no result in this direction. In this paper, with the aid of the
new variable replacement developed by Shen and Wang in
[18] and inspired by [20, 21], existence of solutions for
equation (1) have been established. Problem (1) has a var-
iational structure, and the corresponding energy functional
is defined by

I uð Þ = 1
2

ð
ℝN

g2 uð Þ ∇uj j2dx + 1
2

ð
ℝN

V xð Þu2dx

−
λ

2p

ð
ℝN

xj j−μ ∗ uj jpÂ Ã
uj jpdx

= 1
2

ð
ℝN

g2 uð Þ ∇uj j2dx + 1
2

ð
ℝN

V xð Þu2dx

−
λ

2p

ð
ℝ2N

u xð Þj jp u yð Þj jp
x − yj jμ dxdy:

ð6Þ

However, I is not well defined in H1ðℝNÞ because of
the term

Ð
ℝN g2ðuÞj∇uj2dx. To overcome this difficulty, we

make a change of variable constructed by Shen and Wang
in [18]: v≔GðuÞ≔ Ð u0gðtÞdt. Then, we obtain

J vð Þ = 1
2

ð
ℝN

∇vj j2dx + 1
2

ð
ℝN

V xð ÞG−1 vð Þ2dx

−
λ

2p

ð
ℝN

xj j−μ ∗ G−1 vð Þ�� ��ph i
G−1 vð Þ�� ��pdx

= 1
2

ð
ℝN

∇vj j2dx + 1
2

ð
ℝN

V xð ÞG−1 vð Þ2dx

−
λ

2p

ð
ℝ2N

G−1 v xð Þð Þ�� ��p G−1 v yð Þð Þ�� ��p
x − yj jμ dxdy:

ð7Þ

We say that u is a weak solution of (1), if

I ′ uð Þ, φ
D E

=
ð
ℝN

g2 uð Þ∇u∇φ + g uð Þg′ uð Þ ∇uj j2φ
n

+ V xð Þuφ − λ xj j−μ ∗ uj jpÂ Ã
uj jp−2uφÉdx = 0

ð8Þ

for all φ ∈ C∞
0 ðℝNÞ. Let φ = ð1/gðuÞÞψ. By [18], we know

that the above formula is equivalent to

J ′ vð Þ, ψ
D E

=
ð
ℝN

∇v∇ψ +V xð Þ G−1 vð Þ
g G−1 vð ÞÀ Áψ

(

− λ
xj j−μ ∗ G−1 vð Þ�� ��ph i

G−1 vð Þ�� ��p−2G−1 vð Þψ
g G−1 vð ÞÀ Á

9=
;dx = 0

ð9Þ

for all ψ ∈ C∞
0 ðℝNÞ. Therefore, in order to find the solution

of (1), it suffices to study the solution of the following
equation:

−Δv + V xð Þ G−1 vð Þ
g G−1 vð ÞÀ Á − λ

xj j−μ ∗ G−1 vð Þ�� ��ph i
G−1 vð Þ�� ��p−2G−1 vð Þ

g G−1 vð ÞÀ Á = 0:

ð10Þ

In this paper, we assume that the following condition
holds.

ðVÞV ∈ CðℝN ,ℝÞ, 0 < V0 ≔ inf
x∈ℝN

VðxÞ, and lim
∣x∣→∞

VðxÞ =
+∞.

Set H1
VðℝNÞ = fv ∈H1ðℝNÞ: ÐℝN ½j∇vj2 + VðxÞv2�dx<+

∞g with the norm

∥v∥2H1
V
=
ð
ℝN

∇vj j2 +V xð Þv2Â Ã
dx: ð11Þ

Then, by the proof of Lemma 4 in [22], the embedding
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H1
VðℝNÞ°LtðℝNÞ is compact for all t ∈ ½2, 2∗Þ. Moreover, for

any a > 0, we define ma ≔ inf
v∈Ma

EðvÞ, where

Ma ≔ v ∈H1
V ℝNÀ Á

:
ð
ℝ2N

G−1 v xð Þð Þ�� ��p G−1 v yð Þð Þ�� ��p
x − yj jμ dxdy = a

( )

E vð Þ≔
ð
ℝN

∇vj j2 + V xð ÞG−1 vð Þ2Â Ã
dx:

ð12Þ

Our main result is the following:

Theorem 1. Suppose that ðVÞ is satisfied, then, there exists
λn → +∞ such that equation (1) with λ = λn has a solution.

2. Proof of Theorem 1

To begin with, we give some lemmas.

Lemma 2 (see [23, 24]). The functions g,G and G−1 possess
the following properties:

(1) GðsÞ ≤ gðsÞs ≤ αGðsÞ for all s ≥ 0; GðsÞ ≥ gðsÞs ≥ αGðsÞ
for all s ≤ 0

(2) G−1ðsÞs/gðG−1ðsÞÞ ≤ jG−1ðsÞj2 ≤ αðG−1ðsÞs/gðG−1ðsÞÞÞ
for all s ∈ℝ

(3) jsjα ≤ ðα/βÞ ∣GðsÞ ∣ for all s ∈ℝ

Proposition 3 [25] (Hardy-Littlewood-Sobolev inequality).
Let r, t > 1 and 0 < μ <N with ð1/rÞ + ðμ/NÞ + ð1/tÞ = 2. Let
g ∈ LrðℝNÞ and h ∈ LtðℝNÞ. Then, there exists a sharp con-
stant Cr,N ,μ,t independent of g and h such that

∣
ð
ℝN

ð
ℝN

g xð Þh yð Þ
x − yj jμ dxdy∣ ≤ Cr,N ,μ,t∥g∥r∥h∥t: ð13Þ

Proof of Theorem 1. The proof consists of two steps.
Step 1: we prove that for each a > 0, ma is achieved at

some va ∈Ma, which is a weak solution of equation (10) with
λ = λa satisfying λa ∈ ½ðma/aαÞ, ðαma/aÞ�.

For fixed a > 0, let fvng ⊂Ma be a minimizing sequence
for ma, i.e., vn ∈H1

VðℝNÞ satisfying
Ð
ℝ2N ðjG−1ðvnðxÞÞjp

jG−1ðvnðyÞÞjp/jx − yjμÞdxdy = a such that EðvnÞ→ma as n
→∞. We assert that there exists a constants C1 > 0 such that
EðvnÞ ≥ C1

Ð
ℝN ½j∇vnj2 +VðxÞv2n�dx. Indeed, we may assume

that vn ≠ 0 (otherwise, the conclusion is trivial). If the conclu-
sion is false, then for any positive integer n, we may assume
that

E vnð Þ =
ð
ℝN

∇vnj j2 + V xð ÞG−1 vnð Þ2Â Ã
dx < 1

n
∥vn∥

2
H1

V

= 1
n

ð
ℝN

∇vnj j2 +V xð Þv2n
Â Ã

dx:
ð14Þ

Set wn = vn/∥vn∥H1
V
and gn =G−1ðvnÞ2/∥vn∥2H1

V
. Then,

ð
ℝN

∇wnj j2dx +
ð
ℝN

V xð Þgn xð Þdx→ 0, ð15Þ

which implies that

ð
ℝN

∇wnj j2dx→ 0,
ð
ℝN

V xð Þgn xð Þdx→ 0,
ð
ℝN

V xð Þw2
ndx→ 1

ð16Þ

as n→∞. Then for each ε > 0, there exists a constant C2 > 0
independent of n such that measðΩnÞ < ε, where Ωn ≔ fx ∈
ℝN : ∣G−1ðvnðxÞÞ∣≥C2g. Otherwise, there exist ε0 > 0 and a
subsequence fG−1ðvnkÞg of fG−1ðvnÞg such that for any pos-
itive integer k,

meas Ωnk

À Á
≥ ε0 > 0, ð17Þ

where Ωnk
= fx ∈ℝN : jG−1ðvnkðxÞÞj ≥ kg. By ðVÞ, one has

C ≥ E vnk
À Á

≥
ð
ℝN

V xð ÞG−1 vnk xð ÞÀ Á2dx
≥
ð
Ωnk

V xð ÞG−1 vnk xð ÞÀ Á2dx ≥V0k
2ε0 → +∞

ð18Þ

as k→ +∞, a contradiction. Noting that as ∣G−1ðvnÞ ∣ <C2, by
Lemma 2 (1) and monotonicity of g, we have

v2n ≤ g2 G−1 vnð ÞÀ Á
G−1 vnð Þ2 ≤ g2 C2ð ÞG−1 vnð Þ2: ð19Þ

Hence,

ð
ℝN\Ωn

V xð Þw2
ndx ≤ g2 C2ð Þ

ð
ℝN

V xð Þgn xð Þdx→ 0: ð20Þ

By the integral absolutely continuity, there exists ε > 0
such that whenever Ω ⊂ℝN and measðΩÞ < ε,

Ð
Ω
VðxÞw2

ndx
< 1/2. For this ε, one has

ð
ℝN

V xð Þw2
ndx =

ð
Ωn

V xð Þw2
ndx +

ð
ℝN \Ωn

V xð Þw2
ndx ≤

1
2

+
ð
ℝNΩn

V xð Þw2
ndx,

ð21Þ

which implies 1 ≤ 1/2, a contradiction. Therefore, up to a
subsequence, there exists va ∈H1

VðℝNÞ such that vn → va
in H1

VðℝNÞ, vn → va in LtðℝNÞ for 2 ≤ t < 2∗, and vnðxÞ
→ vaðxÞ, a.e., on ℝN . By means of the definition of weak

3Journal of Function Spaces

 9303, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/6430104 by Inner M

ongolia N
orm

al, W
iley O

nline L
ibrary on [21/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



convergence, we know

0 ≤
ð
ℝN

∇vn−∇vaj j2dx =
ð
ℝN

∇vnj j2dx

+
ð
ℝN

∇vaj j2dx − 2
ð
ℝN

∇vn · ∇vadx,

ð22Þ

which implies that

liminf
n→∞

ð
ℝN

∇vnj j2dx ≥ liminf
n→∞

2
ð
ℝN

∇vn · ∇vadx −
ð
ℝN

∇vaj j2dx
� �

=
ð
ℝN

∇vaj j2dx:

ð23Þ

By Fatou Lemma, we haveð
ℝN

V xð ÞG−1 vað Þ2dx ≤ liminf
n→∞

ð
ℝN

V xð ÞG−1 vnð Þ2dx: ð24Þ

Consequently, EðvaÞ ≤ liminf
n→∞

½ÐℝN j∇vnj2 +
Ð
ℝNVðxÞG−1

ðvnÞ2� = liminf
n→∞

EðvnÞ. Moreover, by the Hardy-Littlewood-

Sobolev inequality and Lemma 2 (3), one has

a =
ð
ℝ2N

G−1 vn xð Þð Þ�� ��p G−1 vn yð Þð Þ�� ��p
x − yj jμ dxdy

≤ C∥ G−1 vnð Þ�� ��p∥22N/2N−μ ≤ C
ð
ℝN

vnj j2Np/α 2N−μð Þdx
� �2N−μ/N

:

ð25Þ

Since 2 < 2Np/αð2N − μÞ < 2∗, by Lemma A.1 in [26]
and Lebesgue’s dominated convergence theorem, we can
easily infer that

Ð
ℝ2N ðjG−1ðvaðxÞÞjpjG−1ðvaðyÞÞjp/jx − yjμÞd

xdy = a, and so va ∈Ma. Hence, ma ≤ EðvaÞ ≤ liminf
n→∞

EðvnÞ
=ma, which means that ma is achieved at some va ∈Ma.
Moreover, by a standard argument, we can conclude that
va is a weak solution of

−Δv + V xð Þ G−1 vð Þ
g G−1 vð ÞÀ Á = λa

xj j−μ ∗ G−1 vð Þ�� ��ph i
G−1 vð Þ�� ��p−2G−1 vð Þ

g G−1 vð ÞÀ Á :

ð26Þ

Multiplying the above equation by va and integrating
over ℝN , one has

ð
ℝN

∇vaj j2dx +
ð
ℝN

V xð Þ G−1 vað Þva
g G−1 vað ÞÀ Á dx

= λa

ð
ℝN

xj j−μ ∗ G−1 vað Þ�� ��ph i
G−1 vað Þ�� ��p−2G−1 vað Þva

g G−1 vað ÞÀ Á dx:

ð27Þ

By Lemma 2 (2), we obtain ma/aα ≤ λa ≤ αma/a.
Indeed, by Lemma 2 (2), we have

1
α
ma =

1
α
E vað Þ = 1

α

ð
ℝN

∇vaj j2dx +
ð
ℝN

V xð ÞG−1 vað Þ2dx
� �

≤
ð
ℝN

∇vaj j2dx + 1
α

ð
ℝN

V xð ÞG−1 vað Þ2dx

≤
ð
ℝN

∇vaj j2dx +
ð
ℝN

V xð Þ G−1 vað Þva
g G−1 vað ÞÀ Á dx

≤ λa

ð
ℝN

xj j−μ ∗ G−1 vað Þ�� ��ph i
G−1 vað Þ�� ��pdx = λa · a,

ð28Þ

i.e., λa ≥ma/aα. Furthermore,

ma = E vað Þ =
ð
ℝN

∇vaj j2dx +
ð
ℝN

V xð ÞG−1 vað Þ2dx

≥
ð
ℝN

∇vaj j2dx +
ð
ℝN

V xð Þ G−1 vað Þva
g G−1 vað ÞÀ Á dx

≥
λa
α

ð
ℝN

xj j−μ ∗ G−1 vað Þ�� ��ph i
G−1 vað Þ�� ��pdx = λa

α
· a,

ð29Þ

i.e., λa ≤ αma/a.
Step 2: we prove that λa → +∞ as a→ 0.
If the conclusion is false, then there exists a constant G0

> 0 and an → 0ðn→∞Þ such that λn ≔ λan ≤G0. Set vn ≔
van , by Lemma 2 (2) and Hardy-Littlewood-Sobolev inequal-
ity, we have

ð
ℝN

∇vnj j2dx +
ð
ℝN

V xð Þ G−1 vnð Þvn
g G−1 vnð ÞÀ Á dx

= λn

ð
ℝN

xj j−μ ∗ G−1 vnð Þ�� ��ph i
G−1 vnð Þ�� ��p−2G−1 vnð Þvn

g G−1 vnð ÞÀ Á dx

≤ λn

ð
ℝN

xj j−μ ∗ G−1 vnð Þ�� ��ph i
G−1 vnð Þ�� ��pdx = λnan

≤ G0 · an → 0
ð30Þ

as n→∞. Since 2 < 2Np/αð2N − μÞ < 2∗, there exists a con-
stant θ ∈ ð0, 1Þ such that 1/2Np/αð2N − μÞ = ðθ/2Þ + ð1 − θ/
2∗Þ. Consequently, by Lemma 2 (3), ðVÞ, Hölder inequality,
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and Young inequality, one has

ð
ℝN

G−1 vnð Þ�� ��2Np/2N−μ
dx ≤ C

ð
ℝN

vnj j2Np/α 2N−μð Þdx

= C
ð
ℝN

vnj jθ2Np/α 2N−μð Þ vnj j 1−θð Þ2Np/α 2N−μð Þdx

≤ C∥vn∥
θ2Np/α 2N−μð Þ
2 ∥vn∥

1−θð Þ2Np/α 2N−μð Þ
2∗

≤ Cθ∥vn∥
2Np/α 2N−μð Þ
2

+ C 1 − θð Þ∥vn∥2Np/α 2N−μð Þ
2∗

≤ C
ð
ℝN

V xð Þv2ndx
� �Np/α 2N−μð Þ

+ C
ð
ℝN

∇vnj j2dx
� �Np/α 2N−μð Þ

≤ C
ð
ℝN

∇vnj j2 + V xð Þv2n
Â Ã

dx
� �Np/α 2N−μð Þ

≤ C
ð
ℝN

∇vnj j2 + V xð ÞG−1 vnð Þ2Â Ã
dx

� �Np/α 2N−μð Þ
:

ð31Þ

Hence, again, by Lemma 2 (2) and Hardy-Littlewood-
Sobolev inequality, we have

ð
ℝN

∇vnj j2dx +
ð
ℝN

V xð Þ G−1 vnð Þvn
g G−1 vnð ÞÀ Á dx

≤ λn

ð
ℝN

xj j−μ ∗ G−1 vnð Þ�� ��ph i
G−1 vnð Þ�� ��pdx

≤ Cλn∥ G
−1 vnð Þ�� ��p∥22N/2N−μ

≤ C ·G0

ð
ℝN

∇vnj j2 + V xð ÞG−1 vnð Þ2Â Ã
dx

� �p/α

≤ C ·G0

ð
ℝN

∇vnj j2 + V xð Þ G−1 vnð Þvn
g G−1 vnð ÞÀ Á

" #
dx

 !p/α

,

ð32Þ

and so
Ð
ℝN ½j∇vnj2 +VðxÞðG−1ðvnÞvn/gðG−1ðvnÞÞÞ�dx ≥ C

since p/α ≥ 2 > 1, a contradiction. By steps 1 and 2, we com-
plete the proof of Theorem 1.
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