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Abstract—In this paper, we present a class of cascaded non-
linear models for complex-valued system identification, aimed at
baseband modeling of nonlinear radio systems. The proposed
models consist of serially connected elementary linear and non-
linear blocks, with the nonlinear blocks implemented as uniform
spline-interpolated look-up tables (LUT) and the linear blocks
as FIR filters. Wiener, Hammerstein, and Wiener-Hammerstein
models are built, and simple but efficient gradient based adap-
tive learning rules are derived for all the models. This ap-
proach leads to remarkably simple solutions in terms of com-
putational complexity, making the techniques suitable for real-
time implementation. The proposed methods are then applied
to full-duplex self-interference cancellation and digital predistor-
tion in various real-life scenarios. First, evaluations with mea-
sured data from an in-band full-duplex prototype working at
2.4 GHz ISM band show that the algorithms are capable of ob-
taining similar cancellation performance as existing state-of-the-
art solutions, regardless of the clearly reduced complexity. Sec-
ond, a mmW active antenna array working at 28 GHz center
frequency is digitally predistorted with the proposed solutions.
The unwanted emissions and nonlinear distortion are suppressed
to similar levels as with other state-of-the art solutions, and the
corresponding linearity specifications are fulfilled in all cases, while
the processing complexity is again drastically reduced.

Index Terms—Behavioral modeling, cascaded models, digital
predistortion, full-duplex, linearization, look-up tables, power
amplifiers, self-interference cancellation, splines.

I. INTRODUCTION

NONLINEAR modeling and system identification are im-
portant ingredients in many wireless communications

systems, due to the inherent nonlinearity of certain hardware
components. The power amplifier (PA), for example, is typi-
cally operated in its nonlinear region to improve power effi-
ciency [1]. Behavioral modeling and digital predistortion (DPD)
of the PA are typical examples of nonlinear modeling tasks [2].
Other applications include, for example, digital self-interference
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cancellation (DSIC) in simultaneous transmit and receive
(STAR) devices [3]–[5] and nonlinear channel equalization in
satellite communications [6], [7].

Most often a general black-box or behavioral modeling ap-
proach is adopted for such problems, for example based on the
Volterra series [8], [9] or artificial neural networks [7], [10].
However, in many cases some physical knowledge of the system
under study is available, and a block-oriented model is well ar-
gued [7]. A good example of such a problem is self-interference
cancellation in STAR or in-band full-duplex (IBFD), where the
modeling is typically concerned with identifying a nonlinear
device (the PA) in cascade with a linear system (the self-
interference propagation channel), which together constitute a
Hammerstein system [11]. Nonetheless, cascaded models have
been successfully applied to black-box modeling problems as
well such as DPD, see for example [12]–[15]. Compared to
linear-in-parameters models such as Volterra, cascaded models
typically have much less free parameters, thus they are appealing
when low-complexity implementation is pursued.

The literature is abundant in complex nonlinear models and
learning techniques for PA behavioral modeling, DPD, and
DSIC. The vast majority of the existing works are based on
Volterra-type models; see [2], [16] for overviews of these ap-
proaches. The literature on cascaded models and the associ-
ated learning methods for communications applications is more
scarce. Techniques in this category contain the works in [11]–
[15], [17]–[22]. In [20], [21], a frequency-domain identifica-
tion of Hammerstein and Wiener-Hammerstein DPD models,
respectively, was proposed. These works relied on the direct
learning approach, i.e., required learning the PA forward model
which was then inverted. In [12], a Hammerstein DPD with
polynomial nonlinearity was proposed, together with an offline
two-stage least-squares (LS) estimation scheme based on the in-
direct learning architecture (ILA). In [18], the authors proposed
a Hammerstein DPD with a look-up table (LUT) nonlinearity.
They also resorted to a two-stage estimation procedure and ILA,
utilizing smoothed AM-AM and AM-PM curves for generating
the LUT, and LS for estimating the filter coefficients. The study
in [14] proposed a parallel Hammerstein (PH) DPD, with two
independent real-valued spline-based Hammerstein models for
the magnitude and phase. ILA with the Levenberg-Marquardt
algorithm was used for parameter estimation, making real-time
learning and tracking challenging due to the involved computa-
tional complexity. In [17] and [15], the authors presented Wiener
and Hammerstein models, respectively, building on spline-based
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neural networks. The learning is based on the direct learning
architecture, where the forward model is estimated with LS
based algorithms, and then inverted with an iterative scheme.
Altogether, the learning complexities of all the above techniques
are considerable, and can be considered generally unsuitable for
real-time implementation. In [22], a Hammerstein DPD based
on the simplical canonical piece-wise linear (SCPWL) basis
functions was introduced, and least mean squares (LMS)-based
learning algorithms with both direct and indirect learning ar-
chitecture were proposed. However, the solutions required the
identification of the forward PA model, which was assumed
to obey the Wiener model, thus complicating the estimation
procedure. The Hammerstein DPD model was also formulated
into a linear-in-parameters form (effectively a PH model), which
led to overparameterization.

In the context of DSIC, PH based algorithms building on poly-
nomial nonlinearities were proposed in [23]–[26], with [23]–
[25] operating in time-domain and [26] in the frequency-domain.
The works in [23], [24] utilized block LS estimation, while
adaptive estimation methods were used in [25], [26]. While the
PH model has been shown to be an accurate model for DSIC, it
suffers from high complexity, making real-time implementation
very challenging, especially with wider bandwidths. In [11],
[27], which serve as a starting point or background for this
paper, we proposed a Hammerstein model for DSIC and DPD,
respectively, building on spline-interpolated LUTs and simple
adaptive learning rules.

In this paper, we propose block-oriented models for complex-
valued baseband modeling of nonlinear radio systems, along
with simple gradient-based learning rules. We build Wiener,
Hammerstein, and Wiener-Hammerstein models, comprised of
different combinations of spline-interpolated LUTs and finite
impulse response (FIR) filters. The techniques are based on the
recently introduced concept of spline adaptive filters, which was
developed for real-valued systems in [28]–[30]. The proposed
techniques differ from these works in the following ways:
� The adaptive spline interpolation scheme within the cas-

caded models is specifically developed for complex-valued
modeling of radio systems, instead of real-valued systems;

� We introduce a so-called injection-based nonlinear block,
where the complex nonlinear gain of the system is defined
as a deviation from unity gain. This helps to control the gain
ambiguity between the cascaded blocks, and also reduces
the dynamic range and thus the number of bits of the LUT;

� We point out and fix a shortcoming in the original learning
equations in [28]–[30], which slowed down their conver-
gence;

� We apply the techniques to two real-life problems: self-
interference cancellation in IBFD, and digital predistortion
of nonlinear power amplifiers;

� We verify the functionality and performance of the models
using measured signals, and compare to the widely-used
memory polynomial (MP) and generalized memory poly-
nomial (GMP).

The proposed techniques are shown to offer similar per-
formance compared to the MP and GMP models in both di-
rect and inverse modeling problems using measured signals,

but with greatly reduced processing complexity. Altogether,
the framework proposed in this paper offers appealing low-
complexity adaptive solutions for real-time applications that
require complex-valued nonlinear model identification. Thus the
paper offers contributions in both signal processing theory and
applications.

The rest of the paper is organized as follows. First, Section II
presents the general real-valued theory of spline interpolation,
and then extends it to the complex domain. Building on our early
work in [11], Section III then presents the spline-interpolated
Hammerstein model, provides a complexity analysis, and high-
lights the differences to the original real-valued work in [29].
Section IV and Section V describe the spline-interpolated
Wiener and Wiener-Hammerstein approaches, along with their
learning rule derivations and complexity analyses. In Section VI,
we present two applications for the techniques, along with
experiments in real-life use cases, in order to verify and validate
the proposed models. Finally, Section VII summarizes the main
findings of this paper.

I. Notation used in this paper

In this paper, matrices are represented by capital boldface
letters, e.g., Σ ∈ CM×N . Ordinary transpose, Hermitian trans-
pose, and complex conjugation are denoted by (·)T , (·)H , and
(·)∗, respectively. By default, vectors are complex-valued col-
umn vectors, presented with lowercase boldface letters, i.e.,
v ∈ CM×1 = [v1 v2 · · · vM ]T . Additionally, the absolute value,
floor, and ceil operators are represented as | · |, �·�·, and �·�·,
respectively.

II. PRINCIPLES OF B-SPLINE INTERPOLATION

This section presents the B-spline interpolation theory. First,
the traditionally used real-valued scheme is presented, and
second, our extension to the complex domain is introduced.
This will enable the use of the scheme in the context of radio
communications, where complex I/Q signals are utilized.

A. Real-Valued B-Spline Interpolation

Spline interpolation builds on piece-wise polynomials to in-
terpolate between an arbitrary set of points known as control
points, under certain continuity and smoothness constraints
at the connecting points. With such a piece-wise modeling
approach, simpler and lower-order functions can be adopted
per individual region, in contrast to the classical polynomial
methods where a single high-order expression is utilized to
model the whole input range. The use of lower-order functions
essentially translates to reduced associated processing complex-
ities [11], [29], as demonstrated in later sections. Also, it allows
to better condition the estimation problem [31], i.e., obtaining
a lower condition number for the regression matrix and thus
avoiding the need of prewhitening/orthogonalization. Another
potential advantage of piece-wise models is the ability to use
different polynomial orders for different regions, depending on
the desired modeling accuracy in each.
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To build the piece-wise scheme, we formally define a set
of knots that divides the input data range into N regions, de-
fined as T = {t0, t1, . . . , tN}, corresponding to regions i =
{1, 2, . . . , N}. The knots are constrained to be non-decreasing,
i.e., t0 < t1 < · · · < tN . We consider uniform splines in this
paper, since it allows for a simple input-output relation, suitable
for adaptive estimation of the control points. Thus, the region
width is defined as Δ = ti+1 − ti, Δ > 0.

In general, this construction can be generalized to any number
of regions, N , and any spline degree, P . The B-spline segment
describing each individual region, [ti, ti+1), is therefore an affine
combination of P + 1 spline curves [32]. Each of these curves
is characterized by the P th-degree spline basis function, given
by the De Boor recursion [31] as

NP
i (u) =

u− ti
ti+P − ti

NP−1
i (u)

+
ti+P+1 − u

ti+P+1 − ti+1
NP−1

i+1 (u), (2)

where the initial 0th-order basis function,N0
i (u), can be defined

as

N0
i (u) =

{
1 if ti ≤ u < ti+1,
0 otherwise.

(3)

The nonzero portions of these segments span over the interval
[ti, ti+P ]. Additionally, the blending functions NP

i for different
regions are shifted versions of each other, and in general, they
can be written as [33]

NP
i (u) = NP

0 (u− i). (4)

Consequently, the resulting spline segment in a particular region
can be defined as [34]

γ(u, i) =

i−1∑
n=i−P−1

NP
n (u)qn, (5)

where qn is the corresponding control point multiplying each
spline curve. Alternatively, equation in (5) can be expressed as
the inner product of two vectors, as

γ(u, i)=
[
NP

i−P−1(u) NP
i−P (u) · · · NP

i−1(u)
]
⎡
⎢⎢⎢⎢⎣

qi−P−1
qi−P

...

qi−1

⎤
⎥⎥⎥⎥⎦.

(6)

Further developing this expression by substituting the recursion
in (2) [28], and combining the spline segments of all the regions,
a generic formulation as a function of the spline basis functions
is obtained as

γ(u, i) = ΨTq, (7)

where q ∈ RQ×1 = [q0 q1 · · · qQ]
T is the complete set of

spline control points. We note that the total number of control
points with N regions and spline order P is Q = N + P .
Additionally, Ψ reads

Ψ ∈ RQ×1 = [0 · · · 0 uTCP 0 · · · 0]T . (8)

Here, u is referred to as the abscissa vector, defined as

u ∈ R(P+1)×1 = [uP uP−1 · · · 1]T , (9)

and CP ∈ R(P+1)×(P+1), shown at the bottom of this page, in
(1) for P = 1, · · · , 4, is the spline basis matrix, which depends
on the chosen spline order P and the knot spacing Δ. The term
uTCP in Ψ is indexed such that the starting index is i (i.e. i− 1
leading zeros and Q− (i+ P ) trailing zeros in (8)), such that
only the corresponding control points are contributing to the
basis function weighting, according to the region index.

B. Complex-Valued B-Spline Interpolation

In the context of radio communications, complex-valued I/Q
signals are utilized. Therefore, real-valued spline interpolation
theory needs to be extended to the complex domain. We begin
by noting that a memoryless baseband model of a bandpass
nonlinear device (such as a PA), with input signal x[n], can
be expressed as [35]

y[n] = x[n]G(|x[n]|), (10)

where G(|x[n]|) = GI(|x[n]|) + jGQ(|x[n]|) is the nonlinear
complex gain of the device. Notice that G(|x[n]|) depends only
on the magnitude of the input signal, and not on its phase.

Let us now denotex[n] as the input signal andG(|x[n]|) as the
output of the spline nonlinearity. According to (10), two separate
splines can be used to model the I and Q responses. As the input
to the splines is a unipolar magnitude signal, the region index in
and abscissa value un, at time instant n, are defined as

in =

⌊ |x[n]|
Δx

⌋
+ 1, (11)

un =
|x[n]|
Δx

− (in − 1), (12)

C1 =

⎛
⎝−1

Δ
1
Δ

1 0

⎞
⎠ , C2 =

1

2

⎛
⎜⎜⎜⎝

1
Δ2

−1
Δ2

1
Δ2

−2
Δ

2
Δ 0

1 1 0

⎞
⎟⎟⎟⎠ , C3 =

1

6

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
Δ3

3
Δ3

−3
Δ3

1
Δ3

3
Δ2

−6
Δ2

3
Δ2 0

−3
Δ 0 3

Δ 0

1 4 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, C4 =
1

24

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Δ4

−4
Δ4

6
Δ4

−4
Δ4

1
Δ4

−4
Δ3

12
Δ3

−12
Δ3

4
Δ3 0

6
Δ2

−6
Δ2

−6
Δ2

6
Δ2 0

−4
Δ

−12
Δ

4
Δ

12
Δ 0

1 11 11 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(1)
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Fig. 1. The injection-based complex spline interpolated LUT scheme pre-
sented in (16), utilized in the proposed block-oriented models.

where Δx is the region width, and un is within the interval
[0,Δx).

The outputs of the two splines modeling the I and Q branch
responses of the system can then be written as

GI(|x[n]|) = ΨT
nq

re, (13)

GQ(|x[n]|) = ΨT
nq

im, (14)

where qre and qim contain the control points for the I and Q
splines, and Ψn is defined in (8). Following (10), and using (13)
and (14), the spline model output can be written as

y[n] = x[n](GI(|x[n]|) + jGQ(|x[n]|))
= x[n]ΨT

n (q
re + jqim)

= x[n]ΨT
nq, (15)

where q = qre + jqim now contains the complex-valued con-
trol points.

In this paper, we define the complex nonlinear gain function
as a deviation from unity gain, and thus write G(|x[n]|) =
1 +GI(|x[n]|) + jGQ(|x[n]|). Thus, with this assumption, the
output of the nonlinear subsystem is written as

y[n] = x[n] + x[n]ΨT
nq

= x[n]ΨT
n (1+ q), (16)

and further illustrated in Fig. 1. Here,1 ∈ RQ×1 denotes a vector
of all ones, and the partition of unity property of B-splines [33],
or ΨT

n1 = 1, is used to arrive to the last form. Applying such a
nonlinear subsystem in cascaded models will effectively remove
the gain ambiguity between the linear and nonlinear blocks. It
will also reduce the dynamic range of the control point vector
q, thus requiring less bits in a fixed-point implementation. This
will be illustrated in the following subsection.

C. Dynamic Range of q

To illustrate the reduced dynamic range, the Modified Saleh
(MS) memoryless PA model presented in [36] is approximated
with the spline models drawn in (15) and (16). The MS AM-AM

and AM-PM responses can be described by

z(r) =
αzr√

1 + βzr3
; φ(r) =

αφ

3
√

1 + βφr4
− ε; (17)

where r and z represent the magnitudes of the input and output
signal, respectively, and φ is the phase error of the output
signal. Additionally, αz , βz , αφ, βφ and ε are the AM-AM and
AM-PM model coefficients. Herein, it is considered αz = 0.82,
βz = 0.29, αφ = −0.35, βφ = 1 and ε = −0.36 [36], which
were extracted from PA input/output data measured from an
LDMOS PA.

An arbitrary OFDM input signal is then passed through
the MS model, and a LS algorithm is used to fit both spline
techniques to the output model data, thus obtaining the control
point vectors from (15) and (16). The magnitude and phase of
these values are then quantized with the same fixed number of
bits to illustrate the dynamic range reduction. Fig. 2(a) shows
the AM-AM response of the MS and the fitted spline models,
with both magnitude and phase quantized with 12 bits. It is
clearly seen that the modelling accuracy of (15) is reduced when
considering the same number of bits as in (16). Additionally,
Fig. 2(b) shows the NMSE values of both solutions as the control
point vectors are quantized with an increasing number of bits.
The modelling performance of (16) is consistently about 18 dB
better than that of (15), until the curves essentially saturate. The
exact difference depends on the shape of the nonlinear response.
However, assessing this further is out of the scope of this paper.

III. COMPLEX SPLINE-BASED ADAPTIVE

HAMMERSTEIN MODEL

The adaptive Hammerstein solution aims at identifying an
unknown nonlinear system consisting of a memoryless nonlinear
function followed by a linear FIR filter [29]. In our previous
publication [11], we studied this structure and applied the spline
interpolated LUT as the nonlinear block. This model, herein
referred to as SPH, serves as a starting point for this paper, and
thus we recapitulate the main expressions.

Let us denote by x[n] and y[n] the input and output signals
of the SPH model, and by s[n] the intermediate signal after the
nonlinear function. Following the B-spline interpolation proce-
dure in (16) for the nonlinear block, and a classical convolution
for the FIR filter, the intermediate and output signals of the SPH
model can be written as

s[n] = x[n] + x[n]ΨT
nqn,

y[n] = gT
n sn, (18)

where gn ∈ CMg×1 = [g[0] g[1] · · · g[Mg − 1]]T , sn ∈
CMg×1 = [s[n] s[n− 1] · · · s[n−Mg + 1]]T , andMg denotes
the number of taps of the linear filter.

A. Learning Rules and Complexity Analysis

The learning rules for both gn and qn can be obtained
by following the gradient-descent approach. From [11], these
expressions read

gn+1 = gn + μge[n]s
∗
n, (19)
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Fig. 2. Response of the Modified Saleh memoryless nonlinear model and its modelling with (15) and (16) and with 12 quantization bits in (a), and NMSE as a
function of the LUT quantization bits in (b).

TABLE I
NUMBER OF REQUIRED ARITHMETIC OPERATIONS IN EACH ITERATION OF THE SPH IDENTIFICATION ALGORITHM, IN TERMS OF FLOPS PER SAMPLE, AND REAL

MULTIPLICATIONS PER SAMPLE

qn+1 = qn + μqe[n]Ξ
T
nX

∗
ng

∗
n, (20)

where Xn contains the signal regression of x[n] over
the span of gn in its main diagonal, Ξn ∈ RMg×Q =
[Ψn Ψn−1 · · · Ψn−Mg+1]

T , and e[n] = d[n]− y[n], d[n] be-
ing the observed signal. Additionally, in the learning rule for
qn+1, it is assumed that the rate of change of qn over the span
of the filter length Mg is negligible, i.e., qn ≈ qn+Mg

. This is
a plausible assumption since μq is small.

It is important to notice the relatively high complexity in-
volved in calculating the term ΞT

nX
∗
ng

∗
n in the update of qn+1,

as ΞT
n is a Q×Mg matrix, somewhat large if gn contains a

large number of taps. To ease this update, in [11] we proposed
a complexity reduction approximation where only a specific
temporal span of the matrix Ξn (row dimension) is chosen for
the update. Obviously, the largest filter taps in gn are the ones
that contribute the most to the update, and those taps typically
correspond to the nearest past samples. Thus, only τ taps, i,e,.
rows of Ξn, gn, and xn, can be selected for the learning rule,
simplifying the overall update and having little effect in the final
modeling performance. This is

Ξn ∈ Rτ×Q = [Ψn Ψn−1 · · · Ψn−τ+1]
T . (21)

We refer the reader to [11] for a more detailed presentation of
the SPH model.

Finally, we analyze the computational complexity of the SPH
model in terms of FLOPs and real multiplications per sample.
The results are gathered in Table I. For this complexity analysis,
it is assumed that one complex multiplication is calculated with
6 FLOPs or 4 real multiplications, while one complex-real mul-
tiplication costs 2 FLOPs or 2 real multiplications, and one real
addition costs 1 FLOP and 0 real multiplications. Additionally,
one square root costs 8 FLOPs, and it is left indicated as sqrt in
the case of real multiplications [16]. Equivalently, one division
is left indicated as div in the complexity tables.

We also note that in certain applications, it may not be neces-
sary to update all coefficients at every iteration. One particular
example is in the full-duplex scenario, shown in Section VI-A,
where the control points qn can remain static once steady-state
is reached, as the operating conditions of the PA usually do
not change drastically once estimated. The filter coefficients,
on the other hand, require constant updating, because the self-
interference (SI) channel is generally time-varying.

B. Suboptimal Formulation in Scarpiniti Et Al.

As mentioned in the introduction to this paper, the original
real-valued presentation of the techniques contained a defect in
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Fig. 3. Convergence comparison between the SPH algorithm based on [29]
and the proposed SPH algorithm.

the coefficient updates, which affected the convergence. In [29],
the update of the real-valued control point vectorqn was defined
as

qi,n+1 = qi,n + μqe[n]C
T
PUi,ngn. (22)

Here, qi,n = [qi,n qi+1,n · · · qi+P,n]
T with qk,n denoting the

k-th entry of qn, is the subset of qn starting from index i.
The matrix Ui,n = [ui,nui,n−1 . . .ui,n−M+1] collects M past
vectors ui,n−k, where each vector assumes the value of un−k

if evaluated in the same span as the current input sample or
in an overlapped span, while otherwise it is a zero vector. The
equation in (22) thus only updates the subset qi,n at time instant
n, whereas our correct learning rule in (20) updates the whole
vector qn in each iteration. The update rule in (22) can also be
seen to use some samples from wrong spans to update the current
span qi,n, therefore making it suboptimal. To substantiate this,
we derived the complex-valued version of (22), which reads

qi,n+1 = qi,n + μqe[n]C
T
PUi,nX

∗
ng

∗
n, (23)

and compared its learning behavior with the update in (20),
when learning a cascaded Hammerstein system. Specifically,
the Hammerstein structure contains the Saleh nonlinear function
presented in Section II-C, followed by an FIR filter with 20
complex-valued taps to account for the memory effects. The
same parametrization (P =3, M=20, Q=7, μw=0.002, μq=
0.002) is naturally chosen in both models to ensure fairness, and
the resulting error signal powers are then presented in Fig. 3. The
proposed Hammerstein solution is seen to clearly outperform
the one based on [29] in terms of convergence speed and final
steady-state behavior.

We finally note that, although the whole control point vector
in (20) is updated in every iteration, only the control points
corresponding to the current span (i.e. qin , qin+1, . . . , qin+P ) are
selected to build the output signal, y[n], in (16). This stems from
the definition of Ψn, which indexes the term uTCP starting
from index in, such that only the correct control points are
selected for the interpolation.

Fig. 4. Architecture of the complex spline interpolated Wiener system. Note
that the spline interpolation block incorporates the scheme presented in Fig. 1.

IV. COMPLEX SPLINE-BASED ADAPTIVE WIENER MODEL

In this section, we present the details of the adaptive Wiener
solution, herein called SPW, which builds on spline interpolated
LUTs. This technique, outlined in Fig. 4, models an unknown
nonlinear system with memory effects by cascading a linear filter
and a nonlinear function. We denote the linear filter by w, and
its tap number by Mw = Mw,pre +Mw,post + 1, considering
both pre-cursor and post-cursor taps. For simplicity, the model
equations consider Mw,pre = 0. This consideration is also taken
in other following methods.

First, denoting x[n] as the input signal of the model, the
intermediate signal s[n] after the linear filter can be written as

s[n] = wT
nxn, (24)

where wn ∈ CMw×1 = [w[0] w[1] · · · w[Mw − 1]]T , and
xn ∈ CMw×1 = [x[n] x[n− 1] · · · x[n−Mw + 1]]T .

Secondly, the nonlinear subsystem in (16) is excited with the
filter output signal s[n], yielding the SPW model output

y[n] = s[n] + s[n]ΨT
nqn. (25)

A. Learning Rules

In order to make the Wiener model adaptive, two different
learning rules, estimating the filter coefficients wn and control
points qn, are derived. To this end, we define the error signal

e[n] = d[n]− y[n], (26)

where the model output signal y[n] is subtracted from the ob-
served signal, or the desired response of the system, denoted here
by d[n]. The problem lies now in estimating the values of wn

andqn to minimize e[n]. This can be done by following the clas-
sical gradient-descent solution, where the quantities are learned
by following the negative direction of the gradient, towards a
local minimum in the mean surface error [37]. The coefficients
can be updated iteratively when necessary, depending on the
requirements of the final application hosting the algorithm [38].

A cost function can be defined as the instantaneous squared
error, depending on both parameters to estimate. In the complex
case, the cost function to minimize is

J(wn,qn) = e[n]e∗[n]. (27)
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Firstly, the general form of the learning rule for the control points
reads

qn+1 = qn − μq∇qn
J(wn,qn), (28)

whereμq[n] is the weight or learning rate of the update. Invoking
elementary complex differentiation rules [39], while considering
the other parameter wn constant, the partial derivative can be
written as

∂J(wn,qn)

∂q∗
n

= e[n]
∂e∗[n]
∂q∗

n

+ e∗[n]
∂e[n]

∂q∗
n

= −e[n]
∂s∗[n]ΨT

n (1+ q∗
n)

∂q∗
n

+ 0

= −e[n]s∗[n]Ψn. (29)

Substituting in (28), the final learning rule reads

qn+1 = qn + μqe[n]s
∗[n]Ψn. (30)

Secondly, the learning rule for the filter wn is

wn+1 = wn − μw∇wn
J(wn,qn), (31)

where μw[n] is the learning rate of the update. The partial
derivative with respect to wn, holding qn constant, is given
as

∂J(wn,qn)

∂w∗
n

= e[n]
∂e∗[n]
∂w∗

n

+ e∗[n]
∂e[n]

∂w∗
n

= −e[n]
∂s∗[n]ΨT

n (1+ q∗
n)

∂w∗
n

+ 0

= −e[n]ΨT
n (1+ q∗

n)x
∗
n

− s[n]x∗
n

|s[n]| Re {e[n]ẏ[n]} . (32)

Here, ẏ[n] = s∗[n]u̇T
nCP (1+ q∗

i,n), and the vector u̇n ∈
R(P+1)×1 = [PuP−1

n (P − 1)uP−2
n · · · 1 0]T represents the

derivative of the abscissa vector un. Substituting this result in
(31), the final learning rule reads

wn+1 = wn + μwx
∗
n

×
(
e[n]ΨT

n (1+ q∗
n) +

Re {e[n]ẏ[n]s[n]}
|s[n]|

)
. (33)

B. Complexity of the Proposed SPW Model

As described above, the algorithm is designed to be executed
sample by sample, and thus this analysis is presented in terms of
FLOPs per sample. This metric basically collects the numbers
of multiplications, additions and subtractions to be executed.
Furthermore, the number of real multiplications required by the
algorithm is also presented separately, as it can constitute an
important metric for hardware implementations, such as FPGAs,
where resources are limited.

The computational complexity of this method is detailed
based on the model identification and coefficient update stages
done in each iteration, following the steps below:

1) Filter the input signal to get s[n]

2) Compute index and abscissa parameters in, un, and un

3) Perform spline interpolation to obtain y[n]
4) Update coefficient qn+1

5) Update coefficient wn+1

The corresponding complexity expressions are collected in
Table II , giving the upper bounds for the final complexity, as
in a hardware implementation many trivial operations such as
multiplications with zero elements or integer powers of 2 or 1/2
do not reflect any added complexity. The complexity expressions
are presented as a function of the model parameters P , Mw

and Q.

V. COMPLEX SPLINE-BASED ADAPTIVE

WIENER-HAMMERSTEIN MODEL

The Wiener-Hammerstein model is a combination of the
Wiener and Hammerstein models, capable of modeling more
complex nonlinear systems with memory. This approach cas-
cades a second linear filter to the Wiener structure to compensate
for memory effects appearing after the nonlinearity [30]. Again,
the nonlinear function is built upon B-spline interpolation, and
it is injected to the linear intermediate signal l[n], as indicated
in Fig. 5. We refer to this approach as the SPWH model.

According to the nomenclature in Fig. 5, the intermediate
signals, l[n] and s[n], and the model output signal, y[n], can be
defined as in (24) and (16). Hence,

l[n] = wT
nxn, (34)

s[n] = l[n] + l[n]ΨT
nqn, (35)

y[n] = gT
n sn, (36)

where the new filters are defined now as wn ∈
CMw×1 = [w[0] w[1] · · · w[Mw − 1]]T , gn ∈ CMg×1 =
[g[0] g[1] · · · g[Mg − 1]]T , and xn and sn are the regression
signals for x[n] and s[n], respectively.

A. Learning Rules

In order to obtain the learning rules for the SPWH model, the
same gradient descent approach can be adopted, where an error
signal is used to generate a cost function which is minimized
with respect to the coefficients to be estimated. In this case,
three different coefficient vectors need to be updated, namely
the spline control points qn, and the two linear filters, wn,
and gn.

The cost function for the SPWH adaptation can then be written
as

J(wn,qn,gn) = e[n]e∗[n], (39)

and the learning expressions are then

wn+1 = wn − μw∇wn
J(wn,qn,gn), (40)

qn+1 = qn − μq∇qn
J(wn,qn,gn), (41)

gn+1 = gn − μg∇gn
J(wn,qn,gn), (42)

where μw, μq, and μg represent the learning rates for each
update. The complex gradient approach is again used to cal-
culate the derivatives, assuming that the other coefficients are
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TABLE II
NUMBER OF REQUIRED ARITHMETIC OPERATIONS IN EACH ITERATION OF THE SPW IDENTIFICATION ALGORITHM, IN TERMS OF FLOPS PER SAMPLE, AND REAL

MULTIPLICATIONS PER SAMPLE

Fig. 5. Architecture of the complex spline interpolated Wiener-Hammerstein system. Note that the spline interpolation block incorporates the scheme presented
in Fig. 1.

constants. Thus, the first gradient in (40) can be obtained as

∂J(wn,qn,gn)

∂w∗
n

= e[n]
∂e∗[n]
∂w∗

n

+ e∗[n]
∂e[n]

∂w∗
n

= −e[n]
∂gH

n s∗n
∂w∗

n

− e∗[n]
∂gT

n sn
∂w∗

n

= · · ·

= e[n]Σng
∗
n +ΥnRe

{
e[n]Ẏng

∗
n

}
, (43)

where Ẏn = diag{ẏ[n], . . . , ẏ[n−Mg + 1]}, and Σn and
Υn are presented in (37) and (38), as shown at the bottom of
this page, respectively.

The final learning update for wn can then be written as

wn+1 = wn + μw

(
e[n]Σng

∗
n +ΥnRe

{
e[n]Ẏng

∗
n

})
,

(44)

Note that removing the filter gn (gn = [1 0 · · · 0]T ) leads
to the learning rule of the SPW model, presented in (44). Addi-
tionally, further removing the nonlinearity (qn = [0 0 · · · 0]T )
leads to the expression of the classical LMS filter, shown in (19).

When considering gn and qn, they directly correspond to
the learning rules obtained in the SPH case, due to the SPWH

structure. Hence, they can directly be written as

gn+1 = gn + μge[n]s
∗
n, (45)

qn+1 = qn + μqe[n]Ξ
T
nL

∗
ng

∗
n, (46)

where Ln is a diagonal matrix containing the regression of l[n].
Note that in the learning rule for qn+1, it is again assumed that
the rate of change of qn over the span of the filter length Mg is
negligible, i.e., qn ≈ qn+Mg

.

B. Complexity of the Proposed SPWH Model

The complexity of the proposed SPWH model is analyzed in
terms of FLOPs and real multiplications per sample.

It is again important to remark the relatively high complexity
involved in calculating the termΞT

nL
∗
nw

∗
n in the update ofqn+1,

as Ξn is a Q×Mw matrix, and wn may contain a large number
of taps. To ease this update, we propose a similar complexity
reduction approximation as was done for the SPH model, where
only a specific temporal span of the matrix Ξn (row dimension)
is chosen for the update. Thus, only τ taps, i,e,. rows of Ξn, wn,
and Ln can be selected for the learning rule, simplifying the
overall update while having minimal effect on the performance.
The approximation is similar to the SPH model, and is given in
(21).

Σn =
[
Ψn(1+ q∗

n)x
∗
n Ψn−1(1+ q∗

n−1)x
∗
n−1 · · · Ψn−Mg+1(1+ q∗

n−Mg+1)x
∗
n−Mg+1

]
, (37)

Υn =
[
l[n]x∗

n

|l[n]|
l[n−1]x∗

n−1

|l[n−1]| · · · l[n−Mg+1]x∗
n−Mg+1

|l[n−Mg+1]|

]
. (38)
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TABLE III
NUMBER OF REQUIRED ARITHMETIC OPERATIONS IN EACH ITERATION OF THE SPWH IDENTIFICATION ALGORITHM, IN TERMS OF FLOPS PER SAMPLE, AND

REAL MULTIPLICATIONS PER SAMPLE

The upper bound complexity expressions for the SPWH
model are gathered in Table III. Note that the case τ = Mw

corresponds to the original learning update, with no complexity
reduction method applied.

VI. APPLICATIONS, USE CASES, AND RF MEASUREMENTS

The proposed modeling approaches can be applied to many
use cases and applications. In this section, we specifically focus
on DSIC and DPD as direct and inverse modeling problems,
respectively. We present extensive RF measurement results to
verify and demonstrate the performance of the proposed tech-
niques.

In the results, the widely used MP and GMP models are
adopted for reference, as they are the most common high-
performance techniques used in the literature [9], [16], [23], [40].
The input/output relation of the GMP model can be expressed
as

y[n] =

PMP∑
p=1
p odd

MMP∑
m=0

αp,mx[n−m]|x[n−m]|p−1

+

PC∑
p=3
p odd

MC∑
m=0

LC∑
l=−LC
l �=0

βp,m,lx[n−m]|x[n−m+ l]|(p−1),

(47)

where PMP, MMP, and αp,m represent the nonlinear order,
memory, and model coefficients of the aligned envelope terms.
Additionally, PC, MC, LC, and βp,m,l are the nonlinear order,
memory, depth, and model coefficients of the lagging and lead-
ing terms. For simplicity, we assume in this work the same
number of lagging and leading coefficients, denoted here by
C = �PC/2�MCLC. In fact, C indicates the number of addi-
tional coefficients compared to the MP model. Obviously, the
MP model can be directly obtained from (47) by setting the
lagging and leading coefficients to zero (and thus C = 0). In
both models, the set of coefficients can be learned using the LMS
algorithm, thus facilitating a fair comparison with the proposed
algorithms. The basis functions of the models, however, need

to be prewhitened or orthogonalized before the processing [41],
if LMS is applied. The reason for this is the poor convergence
performance of the LMS algorithm if the elements of the input
vector are highly correlated, stemming from the large eigenvalue
spread of the input signal covariance matrix. In this case, the
static basis functions can certainly be expected to be correlated,
since they all depend on the original transmit signal. Orthogonal-
izing them is thus a necessary step to ensure efficient parameter
learning by the LMS algorithm. The computational complexity
of this process is included within the parameter update stage.
Further details and analysis of the orthogonalized polynomial
models and LMS learning in the context of DSIC can be found
in [25].

A. Direct Modeling: DSIC in IBFD Transceivers

Self-interference cancellation technology has gathered a lot
of attention in the past 10 years as a key technology for realizing
IBFD communications [3], [23], [40]. IBFD devices are capable
of transmitting and receiving simultaneously on the same chan-
nel, thus enabling a twofold increase in the spectral efficiency
and data rate, without requiring any additional bandwidth. Fig. 6
shows a typical IBFD transceiver structure. Besides IBFD, DSIC
technology can benefit also other communication technolo-
gies [4], as well as joint sensing and communications [42].

To make IBFD commercially viable, the problem of SI must
be dealt with. SI refers to the unwanted own transmit signal that is
leaked into the receiver chain, potentially saturating the receiver
and masking the desired received signal. Thus, any full-duplex
transceiver must be capable of removing the SI signal in an
efficient manner to provide reliable communication. In practice,
this is done in three stages: using propagation domain isola-
tion techniques, analog SI cancellation, and digital cancellation
(DSIC), as illustrated in Fig. 6. DSIC, which is our focus here, is
a forward modeling problem, typically aiming at modeling the
nonlinear transmitter and the SI propagation channel [5]. The
proposed cascaded models are well suited for modeling such a
system.

We demonstrate the feasibility of the proposed techniques
in the context of DSIC in IBFD by utilizing measured data
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Fig. 6. Generic IBFD transceiver architecture.

TABLE IV
THE RF MEASUREMENT AND MODEL PARAMETERS IN THE DSIC EXPERIMENT. THE COMPUTATIONAL COMPLEXITY IN THE CANCELLATION AND PARAMETER

UPDATE STAGES IS PRESENTED IN THE LAST TWO COLUMNS, IN TERMS OF REAL MULTIPLICATIONS PER SAMPLE. THE MP AND GMP BF ORTHOGONALIZATION

COMPLEXITY IS INCLUDED IN THE COEFFICIENT UPDATE STAGE

Fig. 7. PSDs of the overall signal after the different DSICs, for (a) 20 MHz, (b) 40 MHz, and (c) 80 MHz instantaneous bandwidths.

originally used in [43], where a back-to-back relay antenna was
used to provide the analog isolation between the transmitter and
receiver nodes, and no active analog cancellation was used.

The parameterizations for the different DSIC models are col-
lected in Table IV, along with the computational complexity in
terms of real multiplications per input sample in the cancellation
and coefficient update stages. In both SPH and SPWH models,
the proposed complexity reduction method is considered, with
τ = 5. In the GMP model, PC = 5, MC = 3, and LC = 2 are
considered, which leads to C = 12 coefficients. Additionally,
a large number of memory taps is considered in each model

due to the high frequency selectivity of the SI channel. First,
the power spectral densities (PSDs) of the transmit, received,
and signal after cancellation with the algorithms are shown in
Fig. 7, for three different instantaneous signal bandwidths of
20, 40, and 80 MHz. In all cases, the SPH and SPWH models
achieve a similar cancellation to that of the MP and GMP
models, regardless of the substantial complexity reduction. With
the narrowest 20 MHz bandwidth, the amounts of achieved
digital cancellation are 44.1 dB (SPH) and 44.9 dB (SPWH).
With the widest 80 MHz bandwidth, the amounts of achieved
cancellation are 37.9 dB (SPH) and 38.2 dB (SPWH). These
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Fig. 8. Residual powers with respect to the iteration index after the different DSICs, for (a) 20 MHz, (b) 40 MHz, and (c) 80 MHz instantaneous bandwidths.

results indicate high modeling accuracy, with the SPWH model
even outperforming the MP and GMP models in the narrowband
cases. In this particular measurement, the SPW model yields
somewhat lower performance with around 32 dB cancellation
in the three considered bandwidth cases. This is expected due
to the SI signal model naturally following a Hammerstein type
structure. Additionally, the proposed methods are capable of re-
ducing the cancellation complexity by more than 82% (SPH and
SPW) and 80% (SPWH) in the cancellation stage with respect
to the MP and GMP models. In the coefficient update stage,
the computational complexity of all the methods is reduced by
more than 99% compared to the MP and GMP. This is due,
in large part, to them not requiring BF orthogonalization, in
contrast to the polynomial-based models. These results illustrate
the excellent performance-complexity trade-off of the proposed
solutions.

In order to evaluate the convergence properties of the algo-
rithms, Fig. 8 shows the residual powers of the received signals
after cancellation, for the three bandwidths mentioned above.
All the models are essentially achieving a similar convergence
speed, despite the proposed spline based models not using or-
thogonalization. Altogether, the results show that excellent dig-
ital cancellation can be obtained with the proposed algorithms,
regardless of the large processing complexity reduction.

B. Inverse Modeling: Digital Predistortion

In this section, the proposed models are tested in the context of
DPD. DPD is a well-established technique that aims at minimiz-
ing the unwanted emissions and nonlinear distortion originated
from PAs. This approach applies a nonlinear transformation
to the input signal that pre-compensates for the unwanted PA
effects [2]. Thus, in DPD processing, choosing a nonlinear
model with the best complexity-performance trade-off for the
device at hand is a key design challenge.

In this paper, we apply DPD linearization to a millimeter wave
(mmW) active antenna array system operating at 28 GHz. The

array linearization problem, in the single user case, is a single-
input single-output identification problem, similar to regular
DPD linearization of a single PA [44]–[46]. However, in a
K-antenna array, there are alsoK PAs, each with unique (though
somewhat similar) nonlinear characteristics. The DPD can thus
guarantee good linearization only in the main beam direction,
while in the rest of the directions, the beampattern of the array
will help to keep the nonlinear distortions low [44]. Another im-
portant feature of arrays is the load modulation of the PAs, which
occurs due to coupling between the antennas [47]. This will
make the nonlinear characteristics of the array beam-dependent.
Thus, any linearization solution for active arrays needs to take
this into account, as the optimal DPD will also depend on the
beam direction. DPD solutions which are real-time adaptive are
one viable solution to track and adapt the DPD coefficients
as the beam is steered. A further concern at mmWs, as the
signal bandwidths are wide and matching is more problematic
compared to lower frequencies, is the frequency selectivity of
the transmitter. There could be, for example, distinct frequency
selectivity between the baseband/IF parts and the PA, which the
DPD estimator would interpret as part of the PA response, thus
requiring large memory depth and unnecessary complexity in
the DPD. The proposed adaptive cascaded models can separate
these linear distortions from the nonlinear effects of the PAs,
and thus offer much lower complexity linearization, which is an
important criterion when designing real-time systems.

For learning, we adopt the so-called ILA, which is illustrated
in Fig. 9. Here, the DPD coefficients are estimated through the
post-inverse of the PA, which can be calculated directly from the
PA input and output signals [9]. The post-inverse coefficients are
copied to the digital predistorter, and the learning procedure is
then typically iterated a few times to reach steady-state.

The DPD performance is evaluated through the well-known
error vector magnitude (EVM) and normalized mean square
error (NMSE) [16]. However, since an over-the-air (OTA) DPD
system is considered, the out-of-band performance is measured
with the total radiated power (TRP) based adjacent channel
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Fig. 9. Illustration of the ILA DPD system, in the context of a K-antenna
array. The DPD is estimated directly from the predistorted and OTA received
signals. GPA represents the estimate of the complex linear gain of the Tx chain.

Fig. 10. The 5 G NR mmW/FR-2 RF deployment used in the DPD experiment.

leakage ratio (ACLR), which is the filtered mean power cen-
tered on the assigned channel frequency to the filtered mean
power centred on an adjacent channel frequency, measured by
integrating the powers over the whole beamspace, while keeping
the beamforming angle fixed [48].

The overall array measurement setup is shown in Fig. 10,
containing the test device, which is an Anokiwave AWMF-0129
64-element active antenna array, together with other instru-
ments to facilitate signal generation and analysis at 28 GHz
center frequency. Firstly, a Keysight M8190 arbitrary waveform
generator (AWG) is used to generate an IF signal at 3.5 GHz.
The signal is then upconverted to the 28 GHz carrier by a
Keysight N5183B-MXG acting as the LO at 24.5 GHz and a
Marki Microwave T31040 L mixer, and then filtered by a Marki
microwave FB3300 band-pass filter (BPF). The upconverted
signal is then driven through two pre-amplifiers, Analog De-
vices HMC499LC4 and Analog Devices HMC1131, facilitating
enough power to drive the active antenna array to saturation. The
array transmits the signal OTA, and the signal is captured by a
horn antenna at the observation receiver, such that the receiver
antenna is well aligned with the main beam. In this experiment,
the beamforming angle is considered as 0 degrees. The signal is
then carried through an attenuator and another mixer to be down-
converted back to IF. Then, a Keysight DSOS804 A oscilloscope

Fig. 11. Example illustration of DPD OTA linearization results at 28 GHz,
with 400 MHz bandwidth and EIRP≈+42 dBm.

is used as the actual digitizer to facilitate the post-processing on
a host PC, where the DPD algorithms are executed.

In the DPD measurements, a 5G NR FR-2 OFDM signal
with 120 kHz subcarrier spacing (SCS) and 264 active re-
source blocks (RBs) is adopted. This configuration maps to
400 MHz channel bandwidth. The proposed DPD models are
tested with 12 ILA iterations, and 50 ksamples each. The adopted
model parametrization and DPD complexity are presented in
Table V. The cross-terms of the GMP model are configured with
PC = 9, MC = 2, LC = 2, which leads to C = 16 coefficients.
A snap-shot linearization example is showed in Fig. 11, at
effective isotropic radiated power (EIRP) of +42 dBm. Within
the three proposed solutions, the SPWH model obtains the best
linearization performance, and the closest to the reference MP
and GMP solutions. This model is followed by the SPH DPD,
which also obtains a good DPD linearization, slightly degraded
but close to SPWH. The SPW model follows somewhat behind
the other DPD solutions, but it is still capable of obtaining a
fair amount of performance. This result can be explained as fol-
lows. On the one hand, the SPW model cannot correct memory
effects and distortion appearing in the mixing and filtering stage
(T31040 L MX and FB3300 BPF), before the driver PA, leading
to performance loss. On the other hand, the SPH model cannot
properly account for the frequency selectivity appearing in the
OTA transmission. The SPWH model, in turn, is able to account
for both phenomena, achieving thus an enhanced performance
compared to the other models.

The same conclusion can be made from Fig. 12, which shows
the NMSE and TRP ACLR performance as a function of the
iteration number. It can also be observed that the convergence
of the DPD models is fast in general, reaching the steady-state
in approximately 4-5 DPD iterations. The 5G NR ACLR limit
of 28 dBc, measured using the TRP [48] approach, is fulfilled in
all cases. It can be seen from Table V that the computational
complexity with respect to the classical MP is also greatly
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TABLE V
THE RF MEASUREMENT AND MODEL PARAMETERS IN THE DPD EXPERIMENT. THE COMPUTATIONAL COMPLEXITY OF THE DPD MAIN PATH AND DPD LEARNING

STAGES IS PRESENTED IN THE LAST TWO COLUMNS, IN TERMS OF REAL MULTIPLICATIONS PER SAMPLE. THE MP AND GMP BF ORTHOGONALIZATION

COMPLEXITY IS INCLUDED IN THE DPD LEARNING STAGE

Fig. 12. DPD performance in terms of (a) NMSE, and (b) TRP ACLR of the proposed DPD models as a function of the iteration index, with 400 MHz bandwidth
and EIRP≈+42 dBm.

reduced by 68% (SPH and SPW) and 53% (SPWH) in the DPD
main path. With respect to GMP, the complexity is reduced by
78% (SPH and SPW) and 67% (SPWH). In the DPD learning,
the computational complexity of the proposed models is reduced
by more than 90% with respect to MP, and by more than
95% with respect to GMP. These results verify the excellent
performance-complexity trade-off of the proposed techniques.

To further demonstrate the performance of the proposed
models, a third and final experiment featuring a power sweep
is presented. The power sweep shows the ACLR, measured
through the TRP, and EVM performance metrics as a function
of the EIRP, which ranges from +38.5 dBm to +42.5 dBm. With
this experiment, we try to shed some light into two main things.
First, to evaluate whether the TRP ACLR or the EVM is the
limiting performance metric in the mmW system, in terms of
maximum achievable EIRP. Second, to assess the performance
of the proposed and reference DPD models as the radiated power
of the antenna array varies. The obtained TRP ACLR and EVM
results are presented in Fig. 13. Firstly, it can be clearly seen
that, when no predistortion is applied, the EVM constitutes the
limiting factor in terms of maximum achievable EIRP, basically
surpassing the 8% EVM limit [48] at approximately +39.8 dBm,
where the TRP ACLR limit is still fulfilled. However, when the
proposed predistortion techniques are applied, both EVM and
TRP ACLR limits are satisfied at least up until +42.5 dBm,
and clearly somewhat beyond, as the figure shows. These find-
ings indicate an increase in the overall power efficiency of the

transmit chain, as the antenna array can be operated closer to
saturation thanks to the DPD operation. Secondly, the power
sweep also indicates that the DPD algorithms behave in a similar
manner as commented before. The proposed SPWH model is
capable of achieving a similar linearization performance to that
of the MP and GMP models, despite the reduced processing
and learning complexities. It is then followed by the SPH and
SPW models, whose performance lie somewhat behind, but still
fulfilling the specified 3GPP limits. In general, the proposed
algorithms achieve good amounts of linearization performance,
and successfully satisfy the 3GPP specifications [48] at least
up to EIRP of +42.5 dBm and clearly beyond, while allowing
for excellent processing and learning complexity reductions.
These results further confirm the very favorable complexity-
performance trade-offs of the proposed solutions in different
scenarios.

VII. CONCLUSION

In this paper, a class of low-complexity cascaded models and
learning algorithms were proposed for modeling of complex-
valued nonlinear systems with memory. Hammerstein, Wiener,
and Wiener-Hammerstein models were constructed, building on
uniform spline-interpolated LUTs as the elementary nonlinear
functions and FIR filters for the linear blocks, and gradient
descent based adaptive algorithms were derived for each of the
models. This approach was shown to yield remarkably simple
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Fig. 13. DPD OTA linearization performance at 28 GHz with 400 MHz bandwidth, as a function of the EIRP of the proposed DPD models in terms of (a) TRP
ACLR, and (b) EVM.

yet effective solutions, suitable for real-time implementation and
continuous learning. In order to validate and verify the proposed
methods, RF measurements were carried out in the context of
full-duplex self-interference cancellation and digital predistor-
tion. First, the received signal from a complete full-duplex proto-
type environment was used to test the SI cancellation capability
of the proposed methods, achieving high cancellation levels with
much lower complexity compared to state-of-the-art. Second, a
millimeter-wave active antenna array operating at 28 GHz was
linearized with the proposed techniques, reducing the unwanted
emissions to levels below the specified limits. These results
illustrate the excellent complexity-performance trade-off of the
proposed methods, as they can offer modeling performance very
close to state-of-the-art regardless of the substantial complexity
reduction.

REFERENCES

[1] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed.
Norwood, MA, USA: Artech House, 2006.

[2] F. M. Ghannouchi and O. Hammi, “Behavioral modeling and predistor-
tion,” IEEE Microw. Mag., vol. 10, no. 7, pp. 52–64, Dec. 2009.

[3] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R.
Wichman, “In-band full-duplex wireless: Challenges and opportunities,”
IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, Sep. 2014.

[4] S. Hong et al., “Applications of self-interference cancellation in 5G and
beyond,” IEEE Commun. Mag., vol. 52, no. 2, pp. 114–121, Feb. 2014.

[5] D. Korpi, “Full-duplex wireless: Self-interference modeling, digital can-
cellation, and system studies,” Ph.D. dissertation, Lab. Electron. Commun.
Eng., Tampere Univ. Technol., Dec. 2017.

[6] S. Benedetto and E. Biglieri, “Nonlinear equalization of digital satellite
channels,” IEEE J. Sel. Areas Commun., vol. SAC-1, no. 1, pp. 57–62,
Jan. 1983.

[7] M. Ibnkahla, N. Bershad, J. Sombrin, and F. Castanie, “Neural network
modeling and identification of nonlinear channels with memory: Algo-
rithms, applications, and analytic models,” IEEE Trans. Signal Process.,
vol. 46, no. 5, pp. 1208–1220, 1998.

[8] A. Zhu, J. C. Pedro, and T. C. Brazil, “Dynamic deviation reduction-
based volterra behavioral modeling of RF power amplifiers,” IEEE Trans.
Microw. Theory Techn., vol. 54, no. 12, pp. 4323–4332, Dec. 2006.

[9] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A gener-
alized memory polynomial model for digital predistortion of RF power
amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852–3860,
Oct. 2006.

[10] T. Liu, S. Boumaiza, and F. M. Ghannouchi, “Dynamic behavioral model-
ing of 3G power amplifiers using real-valued time-delay neural networks,”
IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 1025–1033,
Mar. 2004.

[11] P. Pascual Campo, D. Korpi, L. Anttila, and M. Valkama, “Nonlinear
digital cancellation in full-duplex devices using spline-based hammerstein
model,” in Proc. IEEE Global Commun. Conf., Dec. 2018.

[12] L. Ding, R. Raich, and G. Tong Zhou, “A hammerstein predistortion
linearization design based on the indirect learning architecture,” in Proc.
IEEE Int. Conf. Acoustics, Speech, Signal Process., vol. 3, May 2002,
pp. 2689–2692.

[13] X. Hong, Yu Gong, and Sheng Chen, “A wiener model for memory high
power amplifiers using b-spline function approximation,” in Proc. 17th
Int. Conf. Digit. Signal Process., Jul. 2011, pp. 1–5.

[14] X. Wu, N. Zheng, X. Yang, J. Shi, and H. Chen, “A spline-based ham-
merstein predistortion for 3 G power amplifiers with hard nonlinearities,”
in Proc. 2nd Int. Conf. Future Comput. Commun., vol. 3, May 2010,
pp. 741–745.

[15] S. Chen, X. Hong, J. Gao, and C. J. Harris, “Complex-valued b-spline
neural networks for modeling and inverting hammerstein systems,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 25, no. 9, pp. 1673–1685, Sep. 2014.

[16] A. S. Tehrani, H. Cao, S. Afsardoost, T. Eriksson, M. Isaksson, and C.
Fager, “A comparative analysis of the complexity/accuracy tradeoff in
power amplifier behavioral models,” IEEE Trans. Microw. Theory Techn.,
vol. 58, no. 6, pp. 1510–1520, Jun. 2010.

[17] X. Hong and S. Chen, “Modeling of complex-valued wiener systems
using b-spline neural network,” IEEE Trans. Neural Netw., vol. 22, no. 5,
pp. 818–825, May 2011.

[18] T. Liu, S. Boumaiza, and F. M. Ghannouchi, “Augmented hammerstein
predistorter for linearization of broad-band wireless transmitters,” IEEE
Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1340–1349, Jun. 2006.

[19] H. Kang, Y. Cho, and D. Youn, “On compensating nonlinear distortions
of an OFDM system using an efficient adaptive predistorter,” IEEE Trans.
Commun., vol. 47, no. 4, pp. 522–526, Apr. 1999.

[20] T. Wang and J. Ilow, “Compensation of nonlinear distortions with memory
effects in OFDM transmitters,” in Proc. IEEE Global Telecommun. Conf.,
2004, pp. 2398–2403.

[21] A. Sano and L. Sun, “Identification of hammerstein-wiener system with
application to compensation for nonlinear distortion,” in Proc. 41st SICE
Annu. Conf., 2002, pp. 1521–1526.

[22] M. Cheong, S. Werner, M. Bruno, J. Figueroa, J. Cousseau, and R.
Wichman, “Adaptive piecewise linear predistorters for nonlinear power
amplifiers with memory,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59,
no. 7, pp. 1519–1532, Jul. 2012.

[23] D. Bharadia, E. McMilin, and S. Katti, “Full Duplex Radios,” in Proc. ACM
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, 2013, pp. 375–386.

[24] L. Anttila, D. Korpi, V. Syrjälä, and M. Valkama, “Cancellation of power
amplifier induced nonlinear self-interference in full-duplex transceivers,”
in Proc. 47th Asilomar Conf. Signals, Syst. Comput., Nov. 2013, pp. 1193–
1198.



384 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

[25] D. Korpi, Y.-S. Choi, T. Huusari, S. Anttila, L. Talwar, and M. Valkama,
“Adaptive nonlinear digital self-interference cancellation for mobile in-
band full-duplex radio: Algorithms and RF measurements,” in Proc. IEEE
Global Commun. Conf., Dec. 2015, pp. 1–7.

[26] K. Komatsu, Y. Miyaji, and H. Uehara, “Frequency-domain hammerstein
self-interference canceller for in-band full-duplex OFDM systems,” in
Proc. IEEE Wireless Commun. Netw. Conf., 2017, pp. 1–6.

[27] P. P. Campo et al., “Gradient-adaptive spline-interpolated lut methods for
low-complexity digital predistortion,” IEEE Trans. Circuits Syst. I, Reg.
Papers, to be published, doi: 10.1109/TCSI.2020.3034825.

[28] M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini, “Nonlinear spline
adaptive filtering,” Signal Process., vol. 93, no. 4, pp. 772–783, 2013.

[29] M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini, “Hammerstein
uniform cubic spline adaptive filters: Learning and convergence proper-
ties,” Signal Process., vol. 100, pp. 112–123, 2014.

[30] M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini, “Novel cascade
spline architectures for the identification of nonlinear systems,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 7, pp. 1825–1835, Jul. 2015.

[31] C. De Boor, Practical Guide to Splines. New York, NY, USA: Springer-
Verlag, 1978.
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